150 resultados para inferencia fuzzy
Resumo:
This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.
Resumo:
Recently, considerable research work have been conducted towards finding fast and accurate pattern classifiers for training Intrusion Detection Systems (IDSs). This paper proposes using the so called Fuzzy ARTMAT classifier to detect intrusions in computer network. Our investigation shows, through simulations, how efficient such a classifier can be when used as the learning mechanism of a typical IDS. The promising evaluation results in terms of both detection accuracy and training duration indicate that the Fuzzy ARTMAP is indeed viable for this sort of application.
Resumo:
The system reliability depends on the reliability of its components itself. Therefore, it is necessary a methodology capable of inferring the state of functionality of these components to establish reliable indices of quality. Allocation models for maintenance and protective devices, among others, have been used in order to improve the quality and availability of services on electric power distribution systems. This paper proposes a methodology for assessing the reliability of distribution system components in an integrated way, using probabilistic models and fuzzy inference systems to infer about the operation probability of each component. © 2012 IEEE.
Resumo:
Identification and classification of overlapping nodes in networks are important topics in data mining. In this paper, a network-based (graph-based) semi-supervised learning method is proposed. It is based on competition and cooperation among walking particles in a network to uncover overlapping nodes by generating continuous-valued outputs (soft labels), corresponding to the levels of membership from the nodes to each of the communities. Moreover, the proposed method can be applied to detect overlapping data items in a data set of general form, such as a vector-based data set, once it is transformed to a network. Usually, label propagation involves risks of error amplification. In order to avoid this problem, the proposed method offers a mechanism to identify outliers among the labeled data items, and consequently prevents error propagation from such outliers. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method. © 2012 Springer-Verlag.
Resumo:
This work focuses on applying fuzzy control embedded in microcontrollers in an experimental apparatus using magnetorheological fluid damper. The non-linear behavior of the magnetorheological dampers associated with the parametric variations on vehicle suspension models corroborate the use of the fuzzy controllers. The fundamental formulation of this controller is discussed and its performance is shown through numeric simulations. An experimental apparatus representing a two degree of freedom system containing a magnetorheological damper is used to identify the main parameters and to evaluate the performance of the closed-loop system with the embedded low-cost microcontroller-based fuzzy controller. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
This paper presents a theorem based on the hyper-rectangle defined by the closed set of the time derivatives of the membership functions of Takagi-Sugeno fuzzy systems. This result is also based on Linear Matrix Inequalities and allows the reduction of the conservatism of the stability analysis in the sense of Lyapunov. The theorem generalizes previous results available in the literature. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
Due to an increased awareness and significant environmental pressures from various stakeholders, companies have begun to realize the significance of incorporating green practices into their daily activities. This paper proposes a framework using Fuzzy TOPSIS to select green suppliers for a Brazilian electronics company; our framework is built on the criteria of green supply chain management (GSCM) practices. An empirical analysis is made, and the data are collected from a set of 12 available suppliers. We use a fuzzy TOPSIS approach to rank the suppliers, and the results of the proposed framework are compared with the ranks obtained by both the geometric mean and the graded mean methods of fuzzy TOPSIS methodology. Then a Spearman rank correlation coefficient is used to find the statistical difference between the ranks obtained by the three methods. Finally, a sensitivity analysis has been performed to examine the influence of the preferences given by the decision makers for the chosen GSCM practices on the selection of green suppliers. Results indicate that the four dominant criteria are Commitment of senior management to GSCM; Product designs that reduce, reuse, recycle, or reclaim materials, components, or energy; Compliance with legal environmental requirements and auditing programs; and Product designs that avoid or reduce toxic or hazardous material use. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In this article, the fuzzy Lyapunov function approach is considered for stabilising continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing slack LMI variables into the problem formulation. The relaxation conditions given can also be used with a class of fuzzy Lyapunov functions which also depends on the membership function first-order time-derivative. The stability results are thus extended to systems with large number of rules under membership function order relations and used to design parallel-distributed compensation (PDC) fuzzy controllers which are also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilising conditions presented. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS