103 resultados para immobilized and dissolving
Resumo:
The immobilization of soluble catalyst {Tp(Ms)}TiCl3 (Tp(Ms*)HB(3-mesityl-pyrazolyl)(2)(5-mesityl-pyrazolyl)(-)) on silica and MAO-modified silicas containing 4.0, 8.0 and 23.0 wt.% Al/SiO2 yields active supported catalysts for ethylene polymerization. Among the supported catalysts studied by XRF spectroscopy, higher titanium content was obtained using MAO-modified silica containing 8.0 wt.% Al/SiO2 as support. For the ethylene polymerization reactions carried out in hexane at 60degreesC using a combination of triisobutylaluminum (TiBA) and methylaluminoxane (MAO) (1:1), the activities varied between 24.4 and 113.5 kg of PE/mol [Ti] h. The highest activity is reached using MAO-modified silica containing 4.0 wt.% Al/SiO2 as support. The viscosity-average molecular weights ((M) over bar (v)) of the PE's produced with the supported catalysts varying from 1.44 to 9.94 x 10(5) g/mol with melting temperatures in the range of 125-140degreesC. The use of other Lewis acid cocatalysts, including TiBA, diethylaluminium chloride (DEAC), and trimethylaluminum (TMA) resulted also in the formation of active catalysts for ethylene polymerization. However, the activities are lower than that one using a combination of TiBA and MAO. The viscosity-average molecular weights (R,) of PE's are influenced by varying the cocatalysts as well as the Al/Ti molar ratio. The supported catalyst generated in situ under ethylene atmosphere is roughly four times more active than supported one containing 4.0 wt.% Al/SiO2. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The textile industry consumes large quantities of water and chemicals, especially in dyeing and finishing processes. Textile dye adsorption can be accomplished with natural or synthetic compounds. Cell immobilization using biomaterials allows the reduction of toxicity and mechanical resistance and opens spaces within the matrix for cell growth. The use of natural materials, such as sugarcane bagasse, is promising due to the low costs involved. The aim of the present study was to evaluate the use of sugarcane bagasse treated with either polyethyleneimine (PEI), NaOH or distilled water in the cell immobilization of Saccharomyces cerevisiae for textile dye removal. Three different adsorption tests were conducted: treated sugarcane bagasse alone, free yeast cells and bagasse-immobilized yeast cells. Yeast immobilization was 31.34% with PEI-treated bagasse, 8.56% with distilled water and 22.54% with NaOH. PEI-treated bagasse exhibited the best removal rates of the dye at all pH values studied (2.50, 4.50 and 6.50). The best Acid Black 48 adsorption rates were obtained with use of free yeast cells. At pH 2.50, 1 mg of free yeast cells was able to remove 5488.49 g of the dye. The lowest adsorption capacity rates were obtained using treated bagasse alone. However, the use of bagasse-immobilized cells increased adsorption efficiency from 20 to 40%. The use of immobilized cells in textile dye removal is very attractive due to adsorbed dye precipitation, which eliminates the industrial need for centrifugation processes. Dye adsorption using only yeast cells or sugarcane bagasse requires separation methods.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A flow-injection (FI) method was developed for the determination of oxalate in urine. It was based on the use of oxalate oxidase (E.C. 1.2.3.4) immobilized on ground seeds of the BR-303 Sorghum vulgare variety. A reactor was filled with this activated material, and the samples (200 μL) containing oxalate were passed through it, carried by a deionized water flow. The carbon dioxide produced by the enzyme reaction permeated through a microporous PTFE membrane, and was received in a water acceptor stream, promoting conductivity changes proportional to the oxalate concentration in the sample. The results obtained showed a useful linear range from 0.05 to 0.50 mmol dm-3. The proposed method, when compared with the Sigma enzymatic procedure, showed good correlation (Y = 0.006(±0.016) + 0.98(±0.019)X; r = 0.9995, Y = conductivity in μS, and X = concentration in mmol dm-3), selectivity, and sensitivity. The new immobilization approach promotes greater stability, allowing oxalate determination for 6 months. About 13 determinations can be performed per hour. The precision of the proposed method is about ± 3.2 % (r.s.d).
Resumo:
Routine applications of DNA hybridization biosensors are often restricted by the need for regenerating the single-stranded (ss) probe for subsequent reuse. This note reports on a viable alternative to prolonged thermal or chemical regeneration schemes through the mechanical polishing of oligonucleotide-bulk-modified carbon composite electrodes. The surface of these biocomposite hybridization biosensors can be renewed rapidly and reproducibly by a simple extrusion/polishing protocol. The immobilized probe retains its hybridization activity on confinement in the interior of the carbon paste matrix, with the use of fresh surfaces erasing memory effects and restoring the original target response, to allow numerous hybridization/measurement cycles. We expect that such reusable nucleic acid modified composite electrodes can be designed for a wide variety of biosensing applications.
Resumo:
Nitrous oxide (N2O) is involved in both ozone destruction and global warming. In agricultural soils it is produced by nitrification and denitrification mainly after fertilization. Nitrification inhibitors have been proposed as one of the management tools for the reduction of the potential hazards of fertilizer-derived N2O. Addition of nitrification inhibitors to fertilizers maintains soil N in ammonium form, thereby gaseous N losses by nitrification and denitrification are less likely to occur and there is increased N utilization by the sward. We present a study aimed to evaluate the effectiveness of the nitrification inhibitor dicyandiamide (DCD) and of the slurry additive Actilith F2 on N2O emissions following application of calcium ammonium nitrate or cattle slurry to a mixed clover/ryegrass sward in the Basque Country. The results indicate that large differences in N2O emission occur depending on fertilizer type and the presence or absence of a nitrification inhibitor. There is considerable scope for immediate reduction of emissions by applying DCD with calcium ammonium nitrate or cattle slurry. DCD, applied at 25 kg ha-1, reduced the amount of N lost as N2O by 60% and 42% when applied with cattle slurry and calcium ammonium nitrate, respectively. Actilith F2 did not reduce N2O emissions and it produced a long lasting mineralization of previously immobilized added N.
Resumo:
Lipases are versatile enzymes regarding the range of reactions they catalyse and substrates on which they act. They are as well important as catalyst in organic synthesis. Their immobilization on appropriate supports confer them greater stability besides the possibility of operating in continuous reactors. In order to explore these abilities, the reactions involving hydrolysis of p-nitrophenyl acetate (PNPA) and transesterification of PNPA with n-butanol were chosen. Lipases from two different sources were assayed, namely: microbial (Candida rugosa, CRL, Sigma Type VII) and pancreatic (PPL, Sigma, Type 11). Two immobilization methods were also used, namely: 1) adsorption, using as support the following silica derivatives (150-300μm e 450μ): phenyl, epoxy, amino and without derivation, and 2) covalent binding, using glutaraldehyde as binding agent and silica amino as support. This later method led to better results. Hydrolytic activity was 6.1 U/gsupport for CRL and 0.97U/gsupport for PPL, and of transesterification, 2,8U/gsupport for CRL and 1,9U/gsupport for PPL. Stability of the immobilized enzyme as a function of temperature was evaluated for CRL at 40°C and 50°C and for PPL at 32°C and 40°C. The assays were initially carried out batchwise, both for soluble and immobilized enzymes, aiming to the obtention of parameters for the continues reactor. Lipases immobilized by covalent binding were used in the assays of operacional stability in continuos reactors. For PPL in aqueous medium, at 32°C, and CRL in organic medium at 40°C, both operating continuously, no significant loss of activity was detected along the analysis period of 17 days. In the case of CRL in aqueous medium at 40°C there was a loss of activity around 40% after 18 days. For PPL in organic medium at 40°C the loss was 33% after 20 days. Compairing both sources with each other, very different results were obtained. Higher activitiy was found for CRL, both for hydrolysis and for transesterification reactions, with higher stability in organic medium. PPL showed lower activity as well as higher stability in aqueous medium. The immobilization method by covalent binding showed to be the most appropriate. Immobilized lipases are therefore relatively stable both in aqueous and organic medium.
Resumo:
The characteristics, performance, and application of an electrode, namely, Pt|Hg|Hg 2(NAP) 2| Graphite, where NAP stands for naproxenate ion, are described. This electrode responds to NAP with sensivity of (58.1± 0.9) mV decade -1 over the range 5.0 × 10 -5 - 1.0 × 10 -2 mol L -1 at pH 6.0-9.0 and a detection limit of 3.9 × 10 -5 mol L -1. The electrode is easily constructed at a relatively low cost with fast response time (within 10-35 s) and can be used for a period of 6 months without any considerable divergence in potentials. The proposed sensor displayed good selectivity for naproxen in the presence of several substances, especially concerning carboxylate and inorganic anions. It was used for the direct assay of naproxen in commercial tablets by means of the standard additions method. The analytical results obtained by using this electrode are in good agreement with those given by the United States Pharmacopeia procedure. ©2006 Sociedade Brasileira de Química.
Resumo:
Purpose: The aim of the present study was to evaluate the tissue dissolving capacity of various concentrations of sodium hypochlorite either alone or in combination with 17% EDTA. Methods: Eighty bovine pulp fragments were prepared, and their weight was determined using a precision balance. Each pulp fragment was immersed for 2 hours in a solution/mixture that was based on the following groups: G1-saline solution; G2-0.5% NaOCl; G3-1.0% NaOCl; G4-2.5% NaOCl; G5-17% EDTA; G6-0.5% NaOCl+17% EDTA; G7-1.0% NaOCl+ 17% EDTA; and G8-2.5% NaOCl+17% EDTA. The final weight was measured, and the weight loss was calculated. A statistical analysis was performed using either the Student's t-test for paired samples or an ANOVA and Tukey tests (P<0.05 was considered to be significant). Results: We measured a significant difference between the sample weight before and after treatment for each of the tested groups (P<0.05). The 2.5% sodium hypochlorite solution (G4) completely dissolved the pulp tissue within the test period. NaOCl+EDTA was less effective than sodium hypochlorite alone at dissolving the pulp tissue (P<0.05), and EDTA alone (G5) did not markedly dissolve the pulp tissue. Conclusion: Using EDTA together with NaOCl reduced the tissue dissolving properties compared with NaOCl alone, regardless of the concentration of NaOCl that was used. © 2011 Só et al.; licensee EDIPUCRS.
Resumo:
Chemical reagents used by the textile industry are very diverse in their composition, ranging from inorganic compounds to polymeric compounds. Strong color is the most notable characteristic of textile effluents, and a large number of processes have been employed for color removal. In recent years, attention has been directed toward various natural solid materials that are able to remove pollutants from contaminated water at low cost, such as sugarcane bagasse. Cell immobilization has emerged as an alternative that offers many advantages in the biodegradation process, including the reuse of immobilized cells and high mechanical strength, which enables metabolic processes to occur under adverse conditions of pH, sterility, and agitation. Support treatment also increases the number of charges on the surface, thereby facilitating cell immobilization processes through adsorption and ionic bonds. Polyethyleneimine (PEI) is a polycationic compound known to have a positive effect on enzyme activity and stability. The aim of the present study was to investigate a low-cost alternative for the biodegradation and bioremediation of textile dyes, analyzing Saccharomyces cerevisiae immobilization in activated bagasse for the promotion of Acid Black 48 dye biodegradation in an aqueous solution. A 1 % concentration of a S. cerevisiae suspension was evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated for 240 h using UV-vis spectrophotometry. The analysis revealed significant relative absorbance values, indicating the occurrence of biodegradation in both treatments. Therefore, S. cerevisiae immobilized in sugarcane bagasse is very attractive for use in biodegradation processes for the treatment of textile effluents. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
The soluble lipase from Pseudomonas fluorescens (PFL) forms bimolecular aggregates in which the hydrophobic active centers of the enzyme monomers are in close contact. This bimolecular aggregate could be immobilized by multipoint covalent linkages on glyoxyl supports at pH 8.5. The monomer of PFL obtained by incubation of the soluble enzyme in the presence of detergent (0.5% TRITON X-100) could not be immobilized under these conditions. The bimolecular aggregate has two amino terminal residues in the same plane. A further incubation of the immobilized derivative under more alkaline conditions (e.g., pH 10.5) allows a further multipoint attachment of lysine (Lys) residues located in the same plane as the amino terminal residues. Monomeric PFL was immobilized at pH 10.5 in the presence of 0.5% TRITON X-100. The properties of both PFL derivatives were compared. In general, the bimolecular derivatives were more active, more selective and more stable both in water and in organic solvents than the monomolecular ones. The bimolecular derivative showed twice the activity and a much higher selectivity (100 versus 20) for the hydrolysis of R,S-2-hydroxy-4-phenylbutyric acid ethyl ester (HPBEt) in aqueous media at pH 5.0 compared to the monomeric derivative. In experiments measuring thermal inactivation at 75 °C, the bimolecular derivative was 5-fold more stable than the monomeric derivative (and 50-fold more stable than a one-point covalently immobilized PFL derivative), and it had a half-life greater than 4 h. In organic solvents (cyclohexane and tert-amyl alcohol), the bimolecular derivative was much more stable and more active than the monomeric derivative in catalyzing the transesterification of olive oil with benzyl alcohol. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
A disposable pencil graphite electrode modified with dsDNA was used in combination with square wave voltammetry in order to evaluate the interaction of DNA with the textile dyes Disperse Orange 1 (DO1) and Disperse Red 1 (DR1), and with the products of their electrolysis. Significant changes in the characteristic oxidation peaks of the guanine and adenine moieties of immobilized dsDNA were observed after incubation of the modified electrode for 180 s in solutions of the dyes in their original forms. The same was observed using the electrolysis products obtained by oxidation and reduction conversions. The oxidation peak currents of the guanine and adenine moieties decreased when the concentrations of DO1 and DR1 were increased up to 5.0 × 10 -6 and 1.0 × 10-6 mol L-1, respectively; the signal decreases were more pronounced after interaction with the oxidized dyes, compared to the reduced compounds. The interactions between DNA and DO1, DR1, and the electrolyzed dyes were further investigated by UV-vis spectrophotometry in solution, and different effects such as hypochromism and hyperchromism were observed in the resulting DNA spectra. The investigated interactions showed clear evidence of changes in the DNA structure, and suggested a predominant intercalation mode leading to damage in the biomolecule. © 2013 Elsevier B.V.
Resumo:
An endoxylanase from Streptomyces halstedii was stabilized by multipoint covalent immobilization on glyoxyl-agarose supports. The immobilized enzyme derivatives preserved 65% of the catalytic activity corresponding to the one of soluble enzyme that had been immobilized. These immobilized derivatives were 200 times more stable 200 times more stable than the one-point covalently immobilized derivative in experiments involving thermal inactivation at 60 °C. The activity and stability of the immobilized enzyme was higher at pH 5.0 than at pH 7.0. The optimal temperature for xylan hydrolysis was 10 °C higher for the stabilized derivative than for the non-stabilized derivative. On the other hand, the highest loading capacity of activated 10% agarose gels was 75 mg of enzyme per mL of support. To prevent diffusional limitations, low loaded derivatives (containing 0.2 mg of enzyme per mL of support) were used to study the hydrolysis of xylan at high concentration (close to 1% (w/v)). 80% of the reducing sugars were released after 3 h at 55 °C. After 80% of enzymatic hydrolysis, a mixture of small xylo-oligosaccharides was obtained (from xylobiose to xylohexose) with a high percentage of xylobiose and minimal amounts of xylose. The immobilized-stabilized derivatives were used for 10 reaction cycles with no loss of catalytic activity. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical behavior of polystyrene modified with gold nanoparticle (Au NPs) was investigated in terms of pH-responsive polymer brush. A pH-responsive of modified polymer brush from tethered polystyrene was prepared and used for selective gating transport of anions andcations across the thin-film. An ITO-coated glass electrode was used as substrate and applied to study the switchable permeability of the polymer brush triggered by changes in pH of the aqueous environment. The pH-sensitive behavior of the polymer brush interface has been demonstrated by means of cyclic voltammetry (CV) and Localized Surface Plasmon Resonance (LSPR). CV experiments showed at ph values of 4 and 8 induces swelling and shrinking of the grafted polymer brushes, respectively, and this behavior is fast and reversible. LSPR measurements showed a blue shift of 33 nm in the surface resonance band changes by local pH. The paper brings an easy methodology to fabrication a variety of nanosensors based on the polymer brushes-nanoparticle assemblies. © 2013 by ESG.