169 resultados para bivalent metal ions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cation mobility in acidic soils with low organic-matter contents depends not only on sorption intensity but also on the solubility of the species present in soil solution. In general, the following leaching gradient is observed: potassium (K+) magnesium (Mg2+) calcium (Ca2+) aluminum (Al3+). To minimize nutrient losses and ameliorate the subsoil, soil solution must be changed, favoring higher mobility of M2+ (metal ions) forms. This would be theoretically possible if plant residues were kept on the soil surface. An experiment was conducted in pots containing a Distroferric Red Latosol, with soil solution extractors installed at two depths. Pearl millet, black oat, and oilseed radish residues were laid on the soil surface, and nitrogen (as ammonium nitrate) was applied at rates ranging from 0 to 150mgkg-1. Corn was grown for 52 days. Except for K+ and ammonium (NH4 +), nitrogen rates and plant residues had little effect upon the concentrations and forms of the elements in the soil solution. Presence of cover crop residues on soil surface decreased the effect of nitrogen fertilizer on Ca leaching. More than 90% of the Ca2+, Mg2+, and K+ were found as free ions. The Al3+ was almost totally complexed as Al(OH3)0. Nitrogen application increased the concentrations of almost all the ions in soil solution, including Al3+, although there was no modification in the leaching gradient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phytase (myo-inositol hexaphosphate phosphohydrolase) and phytic acid (myo-inositol hexaphosphate) play an important environmental role, in addition to being a health issue in food industry. Phytic acid is antinutritional due to its ability to chelate metal ions and may also react with proteins decreasing their bioavailability. In this work, we produced biosensors with phytase immobilized in Layer-by-Layer (LbL) films, which could detect phytic acid with a detection limit of 0.19 mmol L-1, which is sufficient to detect phytic acid in seeds of grains and vegetables. The biosensosrs consisted of LbL films containing up to eight bilayers of phytase alternated with poly(allylamine) hydrochloride (PAH) deposited onto an indium-tin oxide (ITO) substrate modified with Prussian Blue. Amperometric detection was conducted in an acetate buffer solution (at pH 5.5) at room temperature, with the biosensor response attributed to the formation of phosphate ions. In subsidiary experiments with the currents measured at 0.0 V (vs. SCE), we demonstrated the absence of effects from some interferents, pointing to a good selectivity of the biosensor. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanoparticles of octakis[3-(3-amino-1,2,4-triazole)propyl]octasilsesquioxane (ATZ-SSQ) were tested as ligands, for transition-metal ions in aqueous solution with a special attention to sorption isotherms, ligand-metal interaction, and determination of metal ions in natural waters. The adsorption potential of the material ATZ-SSQ was compared with related [3(3-amino-1,2,4-triazole)propyl]silica gel (ATZ-SG). The adsorption was performed using a batchwise process and both organofunctionalized surfaces showed the ability to adsorb the metal ions from aqueous solution. The Langmuir model was used to simulate the sorption isotherms. The results suggest that the sorption of these metals on ATZ-SSQ and ATZ-SG occurs mainly by surface complexation. The equilibrium condition is reached at time lower than 3 min for ATZ-SSQ, while for ATZ-SG is only reached at time of 25 min. The maximum metal ion uptake values for ATZ-SSQ were higher than the corresponding values achieved with the ATZ-SG. In order to obtain more information on the ligand-metal interaction of the complexes on the surface of the ATZ-SSQ nanomaterial, ESR study with various degrees of copper loadings was carried out. The ATZ-SSQ was tested for the determination (in flow using a column technique) of the metal ions present in natural waters. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The organo-clay used in this work was prepared from a Na-montmorillonite (Wyoming-USA deposit) by treatment with water solution of hexadecyltrimethylammonium cations. As organo-clays exhibit strong sorptive capabilities for organic molecules, 2-mercapto-5-amino-1,3,4-thiadiazole organofunctional groups, with potential usefulness in chemical analysis, were incorporated on its solid surface. The physically adsorbed reagent did not present any restrictions in coordinating with several metal ions on the surface. The resultant organo-clay complex exhibited strong sorptive capability for removing mercury ions from water in which other metals and ions were also present. The purpose of this work is to study the selective separation of mercury(II) from aqueous solution using the organo-clay complex, measured by batch and chromatographic column techniques, and its application as preconcentration agent in a chemically modified carbon paste electrode for determination of mercury(II) in aqueous solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silica gel chemically modified with 2-aminotiazole groups (SiAT), was used for preconcentration of cupper, zinc, nickel and iron from gasoline, normally used as a engine fuel. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl-0.25-2.00 mol 1(-1)) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for cupper, iron, nickel and zinc are 0.8, 3, 2 and 0.1 mug 1(-1), respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in gasoline using flame AAS for their quantification. (C) 2004 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of 2-aminothiazole modified silica gel (SiAT) and the studies of adsorption and pre-concentration (in batch and using a flow-injection system coupled with optical emission spectrometer) of Cd(II), Cu(II) and Ni(II) in aqueous medium. The adsorption capacity for each metal ions in mmolg(-1) was: Cu(II) = 1.18, Ni(II) = 1.15 and Cd(II) = 1.10. The results obtained in the flow experiments showed about 100% of recovering of the metal ions adsorbed in a mini-column packed with 100 mg of SiAT, using 100 mu L of 2.0 mol L-1 HCl solution as eluent. The quantitative sorption-desorption of the metal ions made possible the application of a flow-injection system in the pre-concentration and quantification by ICP-OES of metal ions at trace level in natural water samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of 2-aminothiazole-modified silica gel (SiAT), as well as its application for preconcentration (in batch and column technique) of Cu(II), Ni(II) and Zn(II) in ethanol medium. The adsorption capacities of SiAT determined for each metal ion were (mmol g(-1)): Cu(II)=1.20, Ni(II)=1.10 and Zn(II)=0.90. In addition, results obtained in flow experiments, showed a recovery of ca. 100% of the metal ions adsorbed in a column packed with 500 mg of SiAT. The eluent was 2.0 mol L-1 HCl. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in fuel ethanol using flame AAS for their quantification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)