83 resultados para Recombinant Protein
Resumo:
A Saccharomyces cerevisiae-expressed nucleocapsid (N) polypeptide of the M41 strain of infectious bronchitis virus (IBV) was used as antigen in a recombinant yeast-expressed N protein-based enzyme-linked immunosorbent assay (Y-N-ELISA). The Y-N-ELISA was rapid, sensitive, and specific for detecting chicken serum antibodies to IBV, and it compared favorably with a commercial ELISA.
Resumo:
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the polyamine-modified lysine, hypusine [N(epsilon)-(4-amino-2-hydroxybutyl)lysine]. Hypusine occurs only in eukaryotes and certain archaea, but not in eubacteria. It is formed post-translationally by two consecutive enzymatic reactions catalyzed by deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Hypusine modification is essential for the activity of eIF5A and for eukaryotic cell proliferation. eIF5A binds to the ribosome and stimulates translation in a hypusine-dependent manner, but its mode of action in translation is not well understood. Since quantities of highly pure hypusine-modified eIF5A is desired for structural studies as well as for determination of its binding sites on the ribosome, we have used a polycistronic vector, pST39, to express eIF5A alone, or to co-express human eIF5A-1 with DHS or with both DHS and DOHH in Escherichia coli cells, to engineer recombinant proteins, unmodified eIF5A, deoxyhypusine- or hypusine-modified eIF5A. We have accomplished production of three different forms of recombinant eIF5A in high quantity and purity. The recombinant hypusine-modified eIF5A was as active in methionyl-puromycin synthesis as the native, eIF5A (hypusine form) purified from mammalian tissue. The recombinant eIF5A proteins will be useful tools in future structure/function and the mechanism studies in translation.
Resumo:
The extracellular glycerol kinase gene from Saccharomyces cerevisiae (GUT]) was cloned into the expression vector pPICZ alpha. A and integrated into the genome of the methylotrophic yeast Pichia pastoris X-33. The presence of the GUT1 insert was confirmed by PCR analysis. Four clones were selected and the functionality of the recombinant enzyme was assayed. Among the tested clones, one exhibited glycerol kinase activity of 0.32 U/mL, with specific activity of 0.025 U/mg of protein. A medium optimized for maximum biomass production by recombinant Pichia pastoris in shaker cultures was initially explored, using 2.31 % (by volume) glycerol as the carbon source. Optimization was carried out by response surface methodology (RSM). In preliminary experiments, following a Plackett-Burman design, glycerol volume fraction (phi(Gly)) and growth time (t) were selected as the most important factors in biomass production. Therefore, subsequent experiments, carried out to optimize biomass production, followed a central composite rotatable design as a function of phi(Gly) and time. Glycerol volume fraction proved to have a significant positive linear effect on biomass production. Also, time was a significant factor (at linear positive and quadratic levels) in biomass production. Experimental data were well fitted by a convex surface representing a second order polynomial model, in which biomass is a function of both factors (R(2)=0.946). Yield and specific activity of glycerol kinase were mainly affected by the additions of glycerol and methanol to the medium. The optimized medium composition for enzyme production was: 1 % yeast extract, 1 % peptone, 100 mM potassium phosphate buffer, pH=6.0, 1.34 % yeast nitrogen base (YNB), 4.10(-5) % biotin, 1 %, methanol and 1 %, glycerol, reaching 0.89 U/mL of glycerol kinase activity and 14.55 g/L of total protein in the medium after 48 h of growth.
Resumo:
In the present study, the GPD2 gene from Saccharomyces cerevisiae, which codifies for the enzyme glycerol-3-phosphate dehydrogenase (GPDH), was cloned from the pPICZ-alpha expression vector and used with the purpose of inducing the extracellular expression of the glycerol-3-phosphate dehydrogenase under the control of the methanol-regulated AOX promoter. The presence of the GPD2 insert was confirmed by PCR analysis. Pichia pastoris X-33 (Mut(+)) was transformed with linearized plasmids by electroporation and transformants were selected on YPDS plates containing 100 mu g/mL of zeocin. Several clones were selected and the functionality of this enzyme obtained in a culture medium was assayed. Among the mutants tested, one exhibited 3.1 x 10(-2) U/mg of maximal activity. Maximal enzyme activity was achieved at 6 days of growth. Medium composition and pre-induction osmotic stress influenced protein production. Pre-induction osmotic stress (culturing cells in medium with either 0.35 M sodium chloride or 1.0 M sorbitol for 4h prior to induction) led to an increase in cell growth with sorbitol and resulted in a significant increase in GPDH productivity with sodium chloride in 24h of induction approximately fivefold greater than under standard conditions (without pre-induction). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This present work reports on development of an amperometric immunosensor for the diagnosis of Chagas' disease using a specific glycoprotein of the trypomastigote surface, which belongs to the Tc85-11 protein family of Trypanosoma cruzi (T cruzi). An atomically flat gold surface on a silicon substrate and gold screen-printed electrodes were functionalized with cystatrine and later activated with glutaraldehyde (GA), which was used to form covalent bonds with the purified recombinant antigen (Tc85-11). The antigen reacts with the antibody from the serum, and the affinity reaction was monitored directly using atomic force microscopy or amperometry through a secondary antibody tagged to peroxidase (HRP). Surface imaging allowed to us to differentiate the modification steps and antigen-antibody interaction allowed to distinguish the affinity reactions. In the amperometric immunosensor, peroxidase catalyses the L-2 formation in the presence of hydrogen peroxide and potassium iodide, and the reduction current intensity was measured at a given potential with screen-printed electrodes. The immunosensor was applied to sera of chagasic patients and patients having different systemic diseases. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Blastocrithidia culicis is a protozoan of the family Trypanosomatidae. It is a parasite of insects, but the presence of bacteriumlike endosymbionts in its cytoplasm led some investigators to study this protozoan. This trypanosomatid does not infect humans and although it is phylogenetically distant from Trypanosoma cruzi, it presents many morphological characteristics, which are similar. In previous studies our group showed the presence of a L27 ribosomal protein in T cruzi (named TcrL27) using a RT-PCR, which also resulted in the cloning, sequencing and expression of an unexpected ribosomal protein, L17, in Blastocrithidia culicis (BcL17). In this paper, Western blot analysis demonstrated that the anti-BcL17 antibody recognizes the presence of the same ribosomal protein either in Blastochritidia culicis and T. cruzi nuclear extracts. Besides, two similar bands (40 and 47 kDa) appeared also in T. cruzi isolated ribosomal proteins and B. culicis nuclear extract corroborating with the findings showed in the phylogenetic reconstruction. With respect to their localization within the ribosome, both the L17 and L27 ribosomal proteins appear to belong to the peptidyl-transferase site, and are therefore part of the key step in protein synthesis. Both ribosomal proteins bind spiramycin derivatives, being therefore compounds of the macrolides connection sites in the ribosome. These findings would open a possibility to better evaluate this issue.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The merozoite surface protein-2 (MSP-2) of Plasmodium falciparum comprises repeats flanked by dimorphic domains defining the allelic families FC27 and IC1. Here, we examined sequence diversity at the msp-2 locus in Brazil and its impact on MSP-2 antibody recognition by local patients. Only 25 unique partial sequences of msp-2 were found in 61 isolates examined. The finding of identical msp-2 sequences in unrelated parasites, collected 6-13 years apart, suggests that no major directional selection is exerted by variant-specific immunity in this malaria-endemic area. To examine antibody cross-reactivity, recombinant polypeptides derived from locally prevalent and foreign MSP-2 variants were used in ELISA. Foreign IC1-type variants, such as 3D7 (currently tested for human vaccination), were less frequently recognized than FC27-type and local IC1-type variants. Antibodies discriminated between local and foreign IC1-type variants, but cross-recognized structurally different local IC1-type variants. The use of evolutionary models of MSP-2 is suggested to design vaccines that minimize differences between local parasites and vaccine antigens. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Most commercial recombinant proteins used as molecular biology tools, as well as many academically made preparations, are generally maintained in the presence of high glycerol concentrations after purification to maintain their biological activity. The present study shows that larger proteins containing high concentrations of glycerol are not amenable to analysis using conventional electrospray ionization mass spectrometry (ESI-MS) interfaces. In this investigation the presence of 25% (v/v) glycerol suppressed the signals of Taq DNA polymerase molecules, while 1% (v/v) glycerol suppressed the signal of horse heart myoglobin. The signal suppression was probably caused by the interaction of glycerol molecules with the proteins to create a shielding effect that prevents the ionization of the basic and/or acidic groups in the amino acid side chains. To overcome this difficulty the glycerol concentration was decreased to 5% (v/v) by dialyzing the Taq polymerase solution against water, and the cone voltage in the ESI triple-quadrupole mass spectrometer was set at 80-130 V. This permitted observation of a mass spectrum that contained ions corresponding to protonation of up to 50% of the ionizable basic groups. In the absence of glycerol up to 85% of the basic groups of Taq polymerase became ionized, as observed in the mass spectrum at relatively low cone voltages. An explanation of these and other observations is proposed, based on strong interactions between the protein molecules and glycerol. For purposes of comparison similar experiments were performed on myoglobin, a small protein with 21 basic groups, whose ionization was apparently suppressed in the presence of 1% (v/v) glycerol, since no mass spectrum could be obtained even at high cone voltages. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Xylella fastidiosa is a xylem-limited, Gram-negative bacterium responsible for citrus variegated chlorosis (CVC) in sweet oranges. In the present study, we present the recombinant expression, purification and characterization of an X. fastidiosa cysteine protease (dubbed Xylellain). The recombinant Xylellain ((HIS)Xylellain) was able to hydrolyze carbobenzoxy-Phe-Arg-7-amido-4-methylcoumarin (Z-FR-MCA) and carbobenzoxy-Arg-Arg-7-amido-4-methylcoumarin (Z-RR-MCA) with similar catalytic efficiencies, suggesting that this enzyme presents substrate specificity requirements similar to cathepsin B. The immunization of mice with (HIS)Xylellain provided us with antibodies, which recognized a protein of c. 31 kDa in the X. fastidiosa pathogenic strains 9a5c, and X. fastidiosa isolated from coffee plants. However, these antibodies recognized no protein in the nonpathogenic X. fastidiosa J1a12, suggesting the absence or low expression of this protein in the strain. These findings enabled us to identify Xylellain as a putative target for combating CVC and other diseases caused by X. fastidiosa strains.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The simultaneous existence of alternative oxidases and uncoupling proteins in plants has raised the question as to why plants need two energy-dissipating systems with apparently similar physiological functions. A probably complete plant uncoupling protein gene family is described and the expression profiles of this family compared with the multigene family of alternative oxidases in Arabidopsis thaliana and sugarcane (Saccharum sp.) employed as dicot and monocot models, respectively. In total, six uncoupling protein genes, AtPUMP1-6, were recognized within the Arabidopsis genome and five (SsPUMP1-5) in a sugarcane EST database. The recombinant AtPUMP5 protein displayed similar biochemical properties as AtPUMP1. Sugarcane possessed four Arabidopsis AOx1-type orthologues (SsAOx1a-1d); no sugarcane orthologue corresponding to Arabidopsis AOx2-type genes was identified. Phylogenetic and expression analyses suggested that AtAOx1d does not belong to the AOx1-type family but forms a new (AOx3-type) family. Tissue-enriched expression profiling revealed that uncoupling protein genes were expressed more ubiquitously than the alternative oxidase genes. Distinct expression patterns among gene family members were observed between monocots and dicots and during chilling stress. These findings suggest that the members of each energy-dissipating system are subject to different cell or tissue/organ transcriptional regulation. As a result, plants may respond more flexibly to adverse biotic and abiotic conditions, in which oxidative stress is involved. © The Author [2006]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.
Resumo:
Uncoupling proteins (UCPs) are specialized mitochondrial transporter proteins that uncouple respiration from ATP synthesis. In this study, cDNA encoding maize uncoupling protein (ZmPUMP) was expressed in Escherichia coli and recombinant ZmPUMP reconstituted in liposomes. ZmPUMP activity was associated with a linoleic acid (LA)-mediated H+ efflux with Km of 56.36 ± 0.27 μM and Vmax of 66.9 μmol H+ min-1 (mg prot)-1. LA-mediated H+ fluxes were sensitive to ATP inhibition with Ki of 2.61 ± 0.36 mM (at pH 7.2), a value similar to those for dicot UCPs. ZmPUMP was also used to investigate the importance of a histidine pair present in the second matrix loop of mammalian UCP1 and absent in plant UCPs. ZmPUMP with introduced His pair (Lys155His and Ala157His) displayed a 1.55-fold increase in LA-affinity while its activity remained unchanged. Our data indicate conserved properties of plant UCPs and suggest an enhancing but not essential role of the histidine pair in proton transport mechanism. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5′ or 3′ end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses. Copyright © 2007, American Society for Microbiology. All Rights Reserved.
Resumo:
The quartz crystal microbalance (QCM) technique has been applied for monitoring the biorecognition of ArtinM lectins at low horseradish peroxidase glycoprotein (HRP) concentrations, using a simple kinetic model based on Langmuir isotherm in previous work.18 The latter approach was consistent with the data at dilute conditions but it fails to explain the small differences existing in the jArtinM and rArtinM due to ligand binding concentration limit. Here we extend this analysis to differentiate sugar-binding event of recombinant (rArtinM) and native (jArtinM) ArtinM lectins beyond dilute conditions. Equivalently, functionalized quartz crystal microbalance with dissipation monitoring (QCM-D) was used as real-time label-free technique but structural-dependent kinetic features of the interaction were detailed by using combined analysis of mass and dissipation factor variation. The stated kinetic model not only was able to predict the diluted conditions but also allowed to differentiate ArtinM avidities. For instance, it was found that rArtinM avidity is higher than jArtinM avidity whereas their conformational flexibility is lower. Additionally, it was possible to monitor the hydration shell of the binding complex with ArtinM lectins under dynamic conditions. Such information is key in understanding and differentiating protein binding avidity, biological functionality, and kinetics. © 2013 American Chemical Society.