181 resultados para PROTONATED ETHANOL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method has been developed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by graphite furnace atomic absorption spectrometry (GFAAS) using a transversely heated graphite atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages using the mixture Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3, and diluted ethanol (1 + 1, v/v) containing different nitric acid concentrations. With 5 rhog Pd + 3 mug Mg as the modifiers, pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1200 C and 2200degreesC respectively. For 20 muL of diluted sample (10 muL ethanol + 10 muL of 0.28 mol L-1 HNO3) dispensed into the graphite tube, analytical curves in the 2.0 - 50 mug L-1 Al, As, Cu, Fe, Mn, Ni ranges were established. The calculated characteristic masses were - 37 pg Al, 73 pg As, 31 pg Cu, 16 pg Fe, 9 pg Mn, and 44 pg Ni, and the lifetime of the tube was around 2 50 firings. The limits of detection (LOD) based on integrated absorbance were 1.2 mug L-1 Al, 2.5 mug L-1 As. 0.22 mug L-1 Cu, 1.6 L-1 Fe 0.20 mug L-1 Mn 1.1 mug L-1 Ni. The relatively standard deviations (n = 12) were less than or equal to 3%, less than or equal to 6%, less than or equal to 2%, less than or equal to 3.4%, less than or equal to 1.3%, and less than or equal to 2% for Al, As, Cu, Fe, Mn, and Ni, respectively, the recoveries of Al, As, Cu, Fe, Mn and Ni added to fuel ethanol samples varied from 77% to 112%, 92% to 114%, 104% to 113%, 73% to 116%, 91% to 122% and 93% to 116%, respectively. Accuracy was checked for Al, As, Cu, Fe, Mn, and Ni determination in 20 samples purchased at local gas stations in Araraquara city, Brazil. A paired t-test showed that the results were in agreement at the 95% confidence level with those obtained by single-element GFAAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-mum thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10(-9)-10(-8) mol L-1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazil has become a great producer of bioethanol using sugarcane as the basic raw material. Fed-batch process and continuous process are used. Biogas generation from vinasse, production of dry yeast, and autolyzed bagasse for animal feed are making the ethanol production less polluting and more profitable. Bagasse surplus has also been converted into electrical energy. Another alternative use for bioethanol is its conversion to petrochemical derivatives. Up to the present, however, this conversion has been carried out on only a small scale by the industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selected yeast strains were examined for their ability lo grow, to retain cell viability and to ferment diluted sugar cane juice (15% total sugar, w/v) to ethanol at 40-degrees-C. The degree of agitation (aeration) affects the thermotolerance while the method used for isolation of the strains appears to have no significant effect. The yeast isolated are aerobically fermentative with increased levels of fermentation and growth resulting from agitation (aeration), the exact level of these increases being dependent on the strain used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acid and ultrasound catalyzed hydrolysis of solventless TEOS-water mixtures are studied, as a function of the initial additions of ethanol to the mixtures, by means of flux calorimetry measurements. A device was specially designed for this purpose. Under acid conditions, our proposed method has been able to resolve hydrolysis from other condensation reactions, by detecting the exothermal hydrolysis reaction heat. The process has been explained by a dissolution and reaction mechanism. Ultrasound forces the dissolution process to start the reaction. The alcohol produced in the reaction helps the dissolution process to further enhance the hydrolysis. Initial amounts of pure ethanol added to the mixtures shorten the start time of the reaction, due to an additional effect of dissolution, and diminish the reaction rate, as a result of the solvent dilution effect. Our dissolution and reaction mechanism modeling describes the main points arising from the experimental data and yields k(H) = 0.24 M(-1) min(-1) for the second-order hydrolysis rate constant at 39 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is proposed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by electrothermal atomic absorption spectrometry (ETAAS) using W-Rh permanent modifier together with Pd(NO3)(2) + Mg(NO3)(2) conventional modifier. The integrated platform of a transversely heated graphite atomizer (THGA) was treated with tungsten, followed by rhodium, forming a deposit containing 250 mug W + 200 mug Rh. A 500-muL, volume of fuel ethanol was diluted with 500 muL, of 0.14 mol L-1 HNO3 in an autosampler cup of the spectrometer. Then, 20 muL, of the diluted ethanol was introduced into the pretreated graphite platform followed by the introduction of 5 mug Pd(NO3)(2) + 3 mug Mg(NO3)(2). The injection of this modifier was required to improve arsenic and iron recoveries in fuel ethanol. Calibrations were carried out using multi-element reference solutions prepared in diluted ethanol (1 + 1, v/v) acidified to 0. 14 mol L-1 HNO3. The pyrolysis and atomization temperatures of the heating program were 1200degreesC and 2200degreesC, respectively, which were obtained with multielement reference solutions in acidic diluted ethanol (1 + 1, v/v; 0. 14 mol L-1 HNO3). The characteristic masses for the simultaneous determination in ethanol fuel were 78 pg Al, 33 pg As, 10 pg Cu, 14 pg Fe, 7 pg Mn, and 24 pg Ni. The lifetime of the pretreated tube was about 700 firings. The detection limits (D.L.) were 1.9 mug L-1 Al, 2.9 mug L-1 As, 0.57 mug L-1.Cu, 1.3 mug L-1 Fe, 0.40 mug L-1 Mn, and 1.3 mug L-1 Ni. The relative standard deviations (n = 12) were 4%, 4%, 3%, 1.5%, 1.2%, and 2.2% for Al, As, Cu, Fe, Mn, and Ni, respectively. The recoveries of Al, As, Cu, Fe, Mn, and Ni added to the fuel ethanol samples varied from 81% to 95%, 80% to 98%, 97% to 109%, 85% to 107%, 98% to 106% and 97% to 103%, respectively. Accuracy was checked for the Al, As, Cu, Fe, Mn, and Ni determination in 10 samples purchased at a local gas station in Araraquara-SP City, Brazil. A paired t-test showed that at the 95% confidence level the results were in agreement with those obtained by single-element ETAAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toxic effects of chronic ethanol ingestion were evaluated in male adult rats for 300 days. The animals were divided into three groups: the controls received only tap water as liquid diet; the chronic ethanol ingestion group received only ethanol solution (30%) in semivoluntary research; and the withdrawal group received the same treatment as chronic ethanol-treated rats until 240 days, after which they reverted to drinking water. Chronic ethanol ingestion induced increased lipoperoxide levels and acid phosphatase activities in seminal vesicles. Cu-Zn superoxide dismutase (SOD) decreased from its basal level 70.8 +/- 3.5 to 50.4 +/- 1.6 U/mg protein at 60 days of chronic ethanol ingestion. As changes in GSH-PX activity were observed in rats after chronic ethanol ingestion, while SOD activities were decreased in these animals, it is assumed that superoxide anion elicits lipoperoxide formation and induces cell damage before being converted to hydrogen peroxide by SOD. Ethanol withdrawal induced increased SOD activity and reduced seminar vesicle damage, indicating that the toxic effects were reversible, since increased SOD activity was adequate to scavenge superoxide radical formation. Superoxide radical is an important intermediate in the toxicity of chronic ethanol ingestion. Copyright (C) 1996 Elsevier B.V. Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mercury-free electrode chemically modified with carbon paste containing dimethylglyoxime was used for determination of nickel in fuel ethanol. The instrumental parameters and composition of the modified paste were optimized. The analytical curve for nickel determination from 5.0 x 10(-9) to 5.0 x10(-7) mol(-1) was obtained using 25 min of accumulation time. The detection limit and amperometric sensitivity obtained for this method were 2.7 x 10 mol(-1) and 5.2 x 10(8) mu A mol(-1) L, respectively. The values for nickel concentration in four commercial samples of fuel ethanol were obtained in the range of 1.1 x 10(-8) to 6.9 x 10(-8) mol(-1). A comparison to graphite furnace atomic absorption spectrometry (GFAAS) was performed for nickel determination in commercial samples of ethanol.