82 resultados para Optimization problems
Resumo:
The study of robust design methodologies and techniques has become a new topical area in design optimizations in nearly all engineering and applied science disciplines in the last 10 years due to inevitable and unavoidable imprecision or uncertainty which is existed in real word design problems. To develop a fast optimizer for robust designs, a methodology based on polynomial chaos and tabu search algorithm is proposed. In the methodology, the polynomial chaos is employed as a stochastic response surface model of the objective function to efficiently evaluate the robust performance parameter while a mechanism to assign expected fitness only to promising solutions is introduced in tabu search algorithm to minimize the requirement for determining robust metrics of intermediate solutions. The proposed methodology is applied to the robust design of a practical inverse problem with satisfactory results.
Resumo:
Técnicas de otimização numérica são úteis na solução de problemas de determinação da melhor entrada para sistemas descritos por modelos matemáticos e cujos objetivos podem ser expressos de uma maneira quantitativa. Este trabalho aborda o problema de otimizar as dosagens dos medicamentos no tratamento da AIDS em termos de um balanço entre a resposta terapêutica e os efeitos colaterais. Um modelo matemático para descrever a dinâmica do vírus HIV e células CD4 é utilizado para calcular a dosagem ótima do medicamento no tratamento a curto prazo de pacientes com AIDS por um método de otimização direta utilizando uma função custo do tipo Bolza. Os parâmetros do modelo foram ajustados com dados reais obtidos da literatura. Com o objetivo de simplificar os procedimentos numéricos, a lei de controle foi expressa em termos de uma expansão em séries que, após truncamento, permite obter controles sub-ótimos. Quando os pacientes atingem um estado clínico satisfatório, a técnica do Regulador Linear Quadrático (RLQ) é utilizada para determinar a dosagem permanente de longo período para os medicamentos. As dosagens calculadas utilizando a técnica RLQ , tendem a ser menores do que a equivalente terapia de dose constante em termos do expressivo aumento na contagem das células T+ CD4 e da redução da densidade de vírus livre durante um intervalo fixo de tempo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A Nested-PCR (N-PCR) tem como objetivo melhorar a sensibilidade do diagnóstico direto da Pneumonia Enzoótica Suína, pois o isolamento do Mycoplasma hyopneumoniae é trabalhoso tornando-se inviável na rotina. Neste trabalho, foi realizado um projeto piloto para a otimização da técnica de N-PCR, utilizando três variáveis: tipo de amostra biológica, meio de transporte da amostra e método de extração do DNA, utilizando oito animais. Os resultados obtidos foram empregados no segundo experimento para a validação do teste utilizando 40 animais. Os resultados obtidos, pela otimização da N-PCR, neste trabalho, permite sugerir esta prova como método de diagnóstico de rotina no monitoramento das infecções por Mycoplasma hyopneumoniae em granjas de suínos.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We propose a method for accelerating iterative algorithms for solving symmetric linear complementarity problems. The method consists in performing a one-dimensional optimization in the direction generated by a splitting method even for non-descent directions. We give strong convergence proofs and present numerical experiments that justify using this acceleration.
Resumo:
Many variational inequality problems (VIPs) can be reduced, by a compactification procedure, to a VIP on the canonical simplex. Reformulations of this problem are studied, including smooth reformulations with simple constraints and unconstrained reformulations based on the penalized Fischer-Burmeister function. It is proved that bounded level set results hold for these reformulations under quite general assumptions on the operator. Therefore, it can be guaranteed that minimization algorithms generate bounded sequences and, under monotonicity conditions, these algorithms necessarily nd solutions of the original problem. Some numerical experiments are presented.
Resumo:
This paper investigates properties of integer programming models for a class of production planning problems. The models are developed within a decision support system to advise a sales team of the products on which to focus their efforts in gaining new orders in the short term. The products generally require processing on several manufacturing cells and involve precedence relationships. The cells are already (partially) committed with products for stock and to satisfy existing orders and therefore only the residual capacities of each cell in each time period of the planning horizon are considered. The determination of production recommendations to the sales team that make use of residual capacities is a nontrivial optimization problem. Solving such models is computationally demanding and techniques for speeding up solution times are highly desirable. An integer programming model is developed and various preprocessing techniques are investigated and evaluated. In addition, a number of cutting plane approaches have been applied. The performance of these approaches which are both general and application specific is examined.
Resumo:
An earlier model underlying the foraging strategy of a pachycodyla apicalis ant is modified. The proposed algorithm incorporates key features of the tabu-search method in the development of a relatively simple but robust global ant colony optimization algorithm. Numerical results are reported to validate and demonstrate the feasibility and effectiveness of the proposed algorithm in solving electromagnetic (EM) design problems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Two fundamental processes usually arise in the production planning of many industries. The first one consists of deciding how many final products of each type have to be produced in each period of a planning horizon, the well-known lot sizing problem. The other process consists of cutting raw materials in stock in order to produce smaller parts used in the assembly of final products, the well-studied cutting stock problem. In this paper the decision variables of these two problems are dependent of each other in order to obtain a global optimum solution. Setups that are typically present in lot sizing problems are relaxed together with integer frequencies of cutting patterns in the cutting problem. Therefore, a large scale linear optimizations problem arises, which is exactly solved by a column generated technique. It is worth noting that this new combined problem still takes the trade-off between storage costs (for final products and the parts) and trim losses (in the cutting process). We present some sets of computational tests, analyzed over three different scenarios. These results show that, by combining the problems and using an exact method, it is possible to obtain significant gains when compared to the usual industrial practice, which solve them in sequence. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
A variational inequality problem (VIP) satisfying a constraint qualification can be reduced to a mixed complementarity problem (MCP). Monotonicity of the VIP implies that the MCP is also monotone. Introducing regularizing perturbations, a sequence of strictly monotone mixed complementarity problems is generated. It is shown that, if the original problem is solvable, the sequence of computable inexact solutions of the strictly monotone MCP's is bounded and every accumulation point is a solution. Under an additional condition on the precision used for solving each subproblem, the sequence converges to the minimum norm solution of the MCP. Copyright © 2000 by Marcel Dekker, Inc.
Resumo:
The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel barrier method using artificial neural networks to solve robust parameter estimation problems for nonlinear model with unknown-but-bounded errors and uncertainties. This problem can be represented by a typical constrained optimization problem. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.
Resumo:
A reformulation of the bounded mixed complementarity problem is introduced. It is proved that the level sets of the objective function are bounded and, under reasonable assumptions, stationary points coincide with solutions of the original variational inequality problem. Therefore, standard minimization algorithms applied to the new reformulation must succeed. This result is applied to the compactification of unbounded mixed complementarity problems. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.
Resumo:
Mathematical programming problems with equilibrium constraints (MPEC) are nonlinear programming problems where the constraints have a form that is analogous to first-order optimality conditions of constrained optimization. We prove that, under reasonable sufficient conditions, stationary points of the sum of squares of the constraints are feasible points of the MPEC. In usual formulations of MPEC all the feasible points are nonregular in the sense that they do not satisfy the Mangasarian-Fromovitz constraint qualification of nonlinear programming. Therefore, all the feasible points satisfy the classical Fritz-John necessary optimality conditions. In principle, this can cause serious difficulties for nonlinear programming algorithms applied to MPEC. However, we show that most feasible points do not satisfy a recently introduced stronger optimality condition for nonlinear programming. This is the reason why, in general, nonlinear programming algorithms are successful when applied to MPEC.