68 resultados para Losipescu shear test


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Although direct bonding takes up less clinical time and ensures increased preservation of gingival health, the banding of molar teeth is still widespread nowadays. It would therefore be convenient to devise methods capable of increasing the efficiency of this procedure, notably for teeth subjected to substantial masticatory impact, such as molars. This study was conducted with the purpose of evaluating whether direct bonding would benefit from the application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface. Methods: A sample of 40 mandibular third molars was selected and randomly divided into two groups: Group 1 - Conventional direct bonding, followed by the application of a layer of resin to the occlusal surfaces of the tube/tooth interface, and Group 2 - Conventional direct bonding. Shear bond strength was tested 24 hours after bonding with the aid of a universal testing machine operating at a speed of 0.5mm/min. The results were analyzed using the independent t-test. Results: The shear bond strength tests yielded the following mean values: 17.08 MPa for Group 1 and 12.60 MPa for Group 2. Group 1 showed higher statistically significant shear bond strength than Group 2. Conclusions: The application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface was found to enhance bond strength quality of orthodontic buccal tubes bonded directly to molar teeth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated three surface treatments and their effects on the shear bond strength between a resin cement and one of three ceramics. The ceramic surfaces were evaluated with scanning electron microscopy (SEM ) as well. Specimens were treated with 50 μm aluminum oxide airborne particles, 10% hydrofluoric acid etching, or a combination of the two. Using a matrix with a center hole (5.0 mm × 3.0 mm), the ceramic bonding areas were filled with resin cement following treatment. The specimens were submitted to thermal cycling (1,000 cycles) and the shear bond strength was tested (0.5 mm/minute). The failure mode and the effect of surface treatment were analyzed under SEM . Data were submitted to ANOVA and a Tukey test (α = 0.05). Duceram Plus and IPS Empress 2 composite specimens produced similar shear bond strength results (p > 0.05), regardless of the treatment method used. Hydrofluoric acid decreased the shear bond strength of In-Ceram Alumina specimens. For all materials, surface treatments changed the morphological surface. All treatments influenced the shear bond strength and failure mode of the ceramic/resin cement composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this in vitro study was to evaluate the shear bond strength of brackets after pre-treatment with different fluoride solutions. This study used 48 freshly extracted sound bovine incisors that were randomly assigned to 4 experimental groups (n=12). CG: (control) without treatment; NF: 4 min application of neutral fluoride; APF: application of 1.23% acidulated phosphate fluoride (APF) for 4 min; and SFV: application of 5% sodium fluoride varnish for 6 h. For each group, after surface treatment, prophylaxis of enamel and bracket bonding with Transbond XT composite resin (3M) were performed following the manufacturer's specifications. The shear bond strength was performed with a universal testing machine 24 h after fixing the brackets. The tooth surfaces were analyzed to verify the adhesive remnant index (ARI). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was statistically significant difference among the groups (p<0.0001). CG and NF groups presented significantly higher bond strength than APF and SFV. There was no significant difference between CG and NF or between APF and SFV (p>0.05). The analysis of ARI scores revealed that most failures occurred at the enamel-resin interface. It may be concluded that the pre-treatment of enamel with 1.23% APF and 5% SFV prior to fixing orthodontic brackets reduces shear bond strength values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major UK initiative, entitled 'Mapping the Underworld', is seeking to address the serious social, environmental and economic consequences arising from an inability to locate the buried utility service infrastructure without resorting to extensive excavations. Mapping the Underworld aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and the application of this technology for detecting buried infrastructure is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured, using geophones, along a line traversing the anticipated run of the pipe. Measurements were made at a test site with a single pressurized polyethylene mains water pipe. Time-extended signals were employed to generate the illuminating wave. Cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation were then calculated and summed using a stacking method to generate a cross-sectional image of the ground. The wide cross-correlation peaks caused by high ground attenuation were partially compensated for by using a generalized cross-correlation function called the smoothed coherence transform. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal was used as an additional reference when calculating the generalized cross-correlation functions. For two out of three tests, the pipe was detected, indicating that this technique will be a valuable addition to the Mapping the Underworld armoury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the first results of a system to carry out seismic SPT, which associates the up-hole seismic technique to the currently used SPT test. This hybrid test allows determining the maximum shear modulus (G 0) together with the SPT test. G 0 is the most important dynamic soil parameter and it is calculated based on the shear wave velocity (V S) measurements. The equipment and the method of analysis will be briefly described. The V s values measured using the S-SPT in one experimental research site located inland of Sao Paulo State-Brazil are presented and compared with down-hole and Seismic CPT test data. These preliminary results indicate that the S-SPT was satisfactory and can be used for dynamic site characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: This study investigated the effect of extreme cooling methods on the flexural strength, reliability and shear bond strength of veneer porcelain for zirconia. Methods: Vita VM9 porcelain was sintered on zirconia bar specimens and cooled by one of the following methods: inside a switched-off furnace (slow), at room temperature (normal) or immediately by compressed air (fast). Three-point flexural strength tests (FS) were performed on specimens with porcelain under tension (PT, n = 30) and zirconia under tension (ZT, n = 30). Shear bond strength tests (SBS, n = 15) were performed on cylindrical blocks of porcelain, which were applied on zirconia plates. Data were submitted to one-way ANOVA and Tukey's post hoc tests (p < 0.05). Weibull analysis was performed on the PT and ZT configurations. Results: One-way ANOVA for the PT configuration was significant, and Tukey's test revealed that fast cooling leads to significantly higher values (p < 0.01) than the other cooling methods. One-way ANOVA for the ZT configuration was not significant (p = 0.06). Weibull analysis showed that normal cooling had slightly higher reliability for both the PT and ZT configurations. Statistical tests showed that slow cooling decreased the SBS value (p < 0.01) and showed less adhesive fracture modes than the other cooling methods. Clinical Significance: Slow cooling seems to affect the veneer resistance and adhesion to the zirconia core; however, the reliability of fast cooling was slightly lower than that of the other methods. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the study was to evaluate the effect of thermal cycling on the shear bond strength of the porcelain/Ti-6Al-4V interfaces prepared by two different processing routes and metallic surface conditions. Polished and SiO2 particle abraded Ti-6Al-4V alloy and Triceram bonder porcelain were used to produce the interfaces. Porcelain-to-metal specimens were processed by conventional furnace firing and hot pressing. Thermal cycling was performed in Fusayama's artificial saliva for 5000 cycles between 5 +/- 1 and 60 +/- 2 degrees C. After thermal cycling, shear bond tests were carried out by using a custom-made stainless steel apparatus. The results were analyzed using t-Student test and non-parametric Kruskal-Wallis test (p<0.01). Most of the polished-fired specimens were fractured during thermal cycling; thus, it was not possible to obtain the shear bond strength results for this group. Sandblasted-fired, polished-hot pressed, and sandblasted-hot pressed specimens presented the shear bond strength values of 76.2 +/- 15.9, 52.2 +/- 23.6, and 59.9 +/- 22.0 MPa, respectively. Statistical analysis indicated that thermal cycling affected the polished specimens processed by firing, whereas a significant difference was not observed on the other groups. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cone Loading Test (CLT) consists of the execution of a load test on the piezocone probe in conjunction with the CPT test. The CLT yields the modulus ECLT, a parameter that can be used in the estimative of foundation settlement. It is also presented here the interpretation and the process to determine ECLT values from the stress-displacement curves obtained from cone loading tests. Several CLT tests were conducted at the experimental research site of São Paulo State University, Bauru-SP-Brazil. The geotechnical profile at the studied site is a brown to bright red slightly clayey fine sand, a tropical soil common to this region which is lateritic, unsaturated and collapsible. The results of CLT tests satisfactorily represent the behavior of the investigated soil. The penetrometric modulus ECLT for each depth was calculated considering the elastic behavior in the initial linear segment of the soil stress-strain curve. The ECLT moduli obtained for the various tests were compared to moduli obtained from PMT and DMT test results performed at same studied site. The shear modulus degradation curves obtained from the CLT tests are also presented. The comparison to PMT and DMT results indicates the CLT test is a viable complementary test to the CPT in the quest for better understanding stress-strain behavior of soils. Further, the CLT test provides a graphic visualization of the degradation of the shear modulus with increasing levels of strain. As a hybrid geotechnical test, CPT+CLT can be valuable in the investigation of non-conventional collapsible soils, whose literature lack reference parameters for the prediction of settlement in the design of foundations.