105 resultados para Ferrite spinel. Citrates precursors. Magnetic material. Radiation absorber


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we analyzed possible damages that vaporization from laser radiation could cause to implant material. Fifteen standard titanium implants, measuring 3.75 mm in diameter by 7 mm in length, were placed into the upper and lower jaws of three dogs according to Branemark's system. After osseointegration, all implants were exposed. In group I (control) conventional exposure with a punch was used; in group II, a CO2 laser with 2 W (power density: 256 W/cm(2); fluency: 0.077 J/cm(2), and a pulse mode of 0.30 ms) was used, and in group III 4 W (power density: 512 W/cm(2), fluency: 0.154 J/cm(2), and a pulse mode of 0.30 ms) was used. After vaporization, the cover screws were removed and sent for metallographic examination. The results showed that cover screws irradiated with 2 and 4 W power caused no superficial or microstructural alteration. The results also showed that the prescribed power densities, fluencies, and the use of the pulse mode were suitable for exposing implants without damage to tissue or implant material. (C) 2002 Laser Institute of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acicular monodispersed Fe1-xREx (RE= Nd, Sm,Eu,Tb;x=0, 0.05, 0.10) metallic nanoparticles (60 +/- 5 nm in length and axial ratio similar to6) obtained by reduction of alumina-coated goethite nanoparticles-containing rare earth (RE) under hydrogen flow are reported. Alumina and maghemite thin layers on particle surface were used to protect the goethite particles against sintering and oxidation, respectively. Al and RE additions were obtained by successive heterocoagulation reactions. Aluminum sulfate (10 at.% based on Fe) was dissolved in water and the pH adjusted to 12.5 with NaOH solution. Goethite particles were suspended in this solution and CO2 gas was blown into the slurry to neutralize it to a pH 8.5 or less. Particles were purified and dehydrated to effect transformation to alumina-coated hematite nanoparticles, which were re-suspended in aqueous solution in which RE sulfate (0-0.15 at.% based on Fe) has been dissolved, and the pH increased by ammonia aqueous solution addition. Resulted alumina-coated RE-doped hematite nanoparticles were reduced to metal at 450 degreesC/12 h under hydrogen flow and passivated with nitrogen-containing ethanol vapor at room temperature. Acicular monodispersed metallic nanoparticle systems were obtained and the presence of Al and RE were confirmed by induced-coupled plasma spectrometry analysis. X-ray diffraction, Mossbauer spectroscopy, and magnetization data are in agreement with the nanosized alpha-Fe core in a bcc structure, having a spinel structure, gammaFe(2)O(3), with thickness similar to1.5 run on particle surface. Main magnetic parameters showed saturation magnetization decreases and significant increasing in the coercive field with the RE composition increases. Magnetic properties of these particles, similar to40% smaller than those commercially available, suggest a decrease in the bit-size for high-density magnetic or magneto-optics recording media application. (C) 2004 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, spinels with the general formula Zn2-xCoxTiO4 were synthesized by the polymeric precursor method and thermally treated at 1,000 A degrees C. The powder precursors were characterized by TG/DTA. A decrease in the DTA peak temperature with the amount of zinc was observed. After the thermal treatment, the characterizations were performed by XRD, IR, colorimetry and UV/VIS spectroscopy. The XRD patterns of all the samples showed the presence of the spinel phase. Infrared spectroscopy showed the presence of ester complexes for Zn2TiO4 after thermal treatment at 500 A degrees C, which disappeared after cobalt addition, indicating that organic material elimination was favored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-energy ball milling was employed to produce small particles of Gd5Si2Ge2. Magnetic and magnetocaloric properties of the ball-milled and bulk Gd5Si2Ge2 samples were investigated through the magnetization measurements. When compared to the bulk material, a significant decrease in saturation magnetization and magnetocaloric effect (-Delta S-max = 4 vs. 20 J/kgK for Delta H = 0-5 T) is observed even after the relatively short ball milling time of 4 h which produced particles with an average size of ca. 0.5 mu m. The ball-milled samples appear to loose a first-order structural transition, present in bulk Gd5Si2Ge2, and display a superparamagnetic behaviour below the corresponding Curie temperatures. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents optical and electrical measurements on plasma generated by DC excited glow discharges in mixtures composed of 95% N2, 4.8% CH4 and 0.2% H2O at pressures varying from 1.064 mbar to 4.0 mbar. The discharges simulate the chemical reactions that may occur in Titan's atmosphere in the presence of meteorites and ice debris coming from Saturn's systems, assisted by cosmic rays and high energy charged particles. The results obtained from actinometric optical emission spectroscopy, combined with the results from a pulsed Langmuir probe, show that chemical species CH, CN, NH and OH are important precursors in the synthesis of the final solid products and that the chemical kinetics is essentially driven by electronic collision processes. It is shown that the presence of water is sufficient to produce complex solid products whose components are important in prebiotic compound synthesis. © 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of silica on core yttrium iron garnet presents a variety of different applications as corrosion resistance and stabilization of magnetic properties. Well-defined magnetic particles were prepared by heterocoagulating silica on yttrium iron garnet to protect the core. Yttrium iron garnet was obtained using a homogeneous nucleation process by controlling the chemical routes from cation hydrolysis in acid medium. The heterocoagulation was induced by tetraethyl orthosilicate hydrolysis in appropriate yttrium iron garnet dispersion medium. The presence of silica on yttrium iron garnet was characterized by vibrating sample magnetometry, X-ray photoemission spectroscopy, transmission electron microscopy, small area electron diffraction and differential thermal analysis. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spindle-type iron fine particles have been prepared by reduction of silica-coated-hematite particles. Hydrogen reduction of the coated-hematite cores yielded uniform spindle-type iron particles, which were stabilized by surface oxidation. Narrow particle distributions are observed from TEM measurements. X-ray, Mössbauer and magnetization data are in agreement with the presence of nanosized α-Fe particles, having surface layer of spinel structure oxide. Mössbauer spectra show that the oxide surface is superparamagnetic at room temperature. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Austenitic stainless steel presents phase changes caused by heat treatment and welding processes. Because it represents a problem in the design of high-homogeneity magnets, we have been studying the magnetic properties of Ti alloys for their use instead of stainless steel as structural material for superconducting magnet construction. In this work, we present the comparative study of the influence of magnetic properties of steel and Ti alloys on the magnetic-field homogeneity of a superconducting coil through numerical calculation using the measured magnetic properties. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A weak ferromagnetic phase is shown in pressed pellets of partially doped poly(3-methylthiophene) (P3MT) in the whole range from 1.8 to 300 K in magnetic measurements. Thermoremanence data have been used to estimate the suppression of this phase to be around 815 K. We also show that instead of the classical antiferromagnetism for the first-order interaction that gives weak ferromagnetism as a second-order effect, metamagnetic behavior is observed. X-band electron spin resonance (ESR) measurements and magnetization measurements allowed us to estimate that 8.1% of the total number of spins contributes to the weak ferromagnetism at room temperature. The doping level obtained from the ESR data is in good agreement with that estimated from electron dispersive spectroscopy measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oral administration with solid dosage forms is a common route in the drug therapy widely used. The drug release by the disintegration process occurs in several gastrointestinal tract (GIT) regions. AC Biosusceptometry (ACB) was originally proposal to characterize the disintegration process of tablets in vitro and in the human stomach, through changes in magnetic signals. The aim of this work was to employ a multisensor ACB system to monitoring magnetic tablets and capsules in the human GIT and to obtain the magnetic images of the disintegration process. The ACB showed accuracy to quantify the gastric residence time, the intestinal transit time and the magnetic images allowed to visualize the disintegration of magnetic formulations in the GIT. The ACB is a non-invasive, radiation free technique, completely safe and harmless to the volunteers and had demonstrated potential to evaluate pharmaceutical dosage forms in the human gastrointestinal tract. © 2005 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, many investments have been made in the area of superconductor materials, with the aim to improve their potential technological applications. Applications on the energy transport using cables, to get high resolution images in the medicine use high magnetic fields, high speed signals use superconductor devices all of them are in crescent evidence and they are showing that the future is coming and next for this new kind of materials. Obviously that everything of this is possible due to the increasing of research with new materials, where the synthesis, characterization and applications are of the mainly objective of these researches. The production of cable for the energy transport has been in advanced stage as the bulks production is too. However, the film production that to aim at the electronic devices area is not as developed or it still need expensive investments. Thinking about that, we are developing a research where we may increase the relation of cost/benefits. Thereby, we are applying the polymeric precursors method to obtain films that will be used in the built of electronic devices. Thin films (mono and multilayers, on crystalline or metallic substrates, controlled thickness) of the BSCCO system have been obtained from dip coating deposition process with excellent results in terms of preferential orientation, controlled thickness, a large area, which may indicate future applications. Based on these results, we present an electrical circuit and their principal characteristics as superconductor transition (85K), transport current density and structure. DC four probes method, scanning electron microscopy, digital optical microscopy and X-ray diffractometry were some techniques used for the characterization of this superconductor electric device. © 2006 Materials Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the preparation and characterization of Zn 0.95Mn0.05O phase obtained by the polymeric precursor method for DMS applications. The as-obtained powders were calcined between 500 to 800°C and characterized by XRD, SEM and BET. The XRD analysis of the powder showed a crystalline material containing second phase. The crystallite sizes ranged from 20 to 51 nm. The micrographs showed that the powders consisted of soft and homogeneous agglomerations. The nitrogen adsorption/desorption curves of the Zn0.95Mn0.05O phases were type II curves, which is characteristic of mesoporous materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study describes the synthesis, characterization and photocatalytic potential of Ti oxide nanostructures of various morphologies and crystalline phases that were synthesized from 4 different precursors by the alkaline hydrothermal method. The materials were characterized by mainly X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM and TEM), thermogravimetric analysis (TGA) and X-ray absorption spectroscopy (XAS). Also, photocatalytic potential was assessed by rhodamine B photodegradation. The materials obtained from peroxytitanium complexes (PTCs) exhibited a strong dependence on the concentration of KOH ([KOH]) used for synthesis. The pre-formed sheets of the PTCs were critical to the formation of nanostructures such as nanoribbons, and they were also compatible with the rolling up process, which can be utilized to form structures such as nanorods, nanowires or nanotubes. In the rhodamine photodegradation tests, TiO2 anatase nanostructures with six-coor inated Ti were more effective than the titanate ones (five-coordinated), despite having a smaller surface area and fewer OH groups. The lower photoactivity of the titanates was attributed to the presence of five-coordinated titanium species (TiO5), which may act as electron-hole recombination centers. Furthermore, the material with a mixture of TiO2/titanate was shown to be promising for photocatalytic applications. © 2013 by American Scientific Publishers.