175 resultados para Electrostatic Potential Dipole Legendre Induced Dyad Polarization
Resumo:
Dental bleaching is a simple and conservative procedure for aesthetic restoration of vital discoloured teeth. However, dental bleaching agents may represent a hazard to human health, especially by causing DNA strand breaks. Genotoxicity tests form an important part of cancer research and risk assessment of potential carcinogens. In the current study, the genotoxic potential associated with exposure to dental bleaching agents was assessed by the single cell gel (comet) assay in vitro. Six commercial dental bleaching agents (Clarigel Gold - Dentsply; Whitespeed - Discus Dental; Nite White - Discus Dental; Magic Bleaching - Vigodent; Whiteness HP - FGM and Lase Peroxide - DMC) were exposed to mouse lymphoma cells in vitro. The results pointed out that all dental bleaching agents tested contributed to the DNA damage as depicted by the mean tail moment. Clear concentration-related effects were obtained for DNA damaging, being the strongest effect observed at the highest dose of the hydrogen peroxide (Whiteness HP and Lase Peroxide, at 35% concentration). on the contrary, Whitespeed (Discus Dental) induced the lowest level of DNA breakage. Taken together, these results suggest that dental bleaching agents may be a factor that increases the level of DNA damage as detected by the single cell gel (comet) assay.
Resumo:
A variety of chemicals can adversely affect the immune system and influence tumor development. The modifying potential of chemical carcinogens on the lymphoid organs and cytokine production of rats submitted to a medium-term initiation-promotion bioassay for carcinogenesis was investigated. Male Wistar rats were sequentially initiated with N-nitrosodiethylamine (DEN), N-methyl-N-nitrosourea (MNU), N-butyl-N-(4hydroxybutyl)nitrosamine (BBN), dihydroxy-di-n-propylnitrosamine (DHPN), and 1,2-dimethylhydrazine (DMH) during 4 weeks. Two initiated groups received phenobarbital (PB) or 2-acetyl amino fluorene (2-AAF) for 25 weeks and two noninitiated groups received only PB or 2-AAF. A nontreated group was used as control. Lymphohematopoietic organs, liver, kidneys, lung, intestines, and Zymbal's gland were removed for histological analysis. Interleukin (IL)-2, IL-12, interferon gamma (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), IL-10, and transforming growth factor betal (TGF-beta1) levels were determined by ELISA in spleen cell culture supernatants. At the fourth week, exposure to the initiating carcinogens resulted in cell depletion of the thymus, spleen and bone marrow, and impairment of IL-2, IL-12, and IFN-gamma production. However, at the 30th week, no important alterations were observed both in lymphoid organs and cytokine production in the different groups. The results indicate that the initiating carcinogens used in the present protocol exert toxic effects on the lymphoid organs and affect the production of cytokines at the initiation step of carcinogenesis. This early and reversible depression of the immune surveillance may contribute to the survival of initiated cells facilitating the development of future neoplasia. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The etiology of hormone-induced cancers has been considered to be a combination of genotoxic and epigenetic events. Currently, the Comet assay is widely used for detecting genotoxicity because it is relatively simple, sensitive, and capable of detecting various kinds of DNA damage. The present study evaluates the genotoxic potential of endogenous and synthetic sex hormones, as detected by the Comet assay. Blood cells were obtained from 12 nonsmoking and 12 smoking women with regular menstrual cycles and from 12 nonsmoking women taking low-dose oral contraceptives (OC). Peripheral blood samples were collected at three phases of the menstrual cycle (early follicular, mean follicular, and luteal phases), or at three different moments of oral contraceptive intake. Three blood samples were also collected from 12 healthy nonsmoking men, at the same time as oral contraceptive users. Results showed no significant difference in the level of DNA damage among the three moments of the menstrual cycle either in nonsmoking and smoking women, or between them. No significant difference in DNA damage was also observed among oral contraceptive users, nonusers, and men. Together, these data indicate lack of genotoxicity induced by the physiological level of the female sex hormones and OC as assessed by the alkaline Comet assay. In conclusion, normal fluctuation in endogenous sex hormones and use of low-doses of oral contraceptive should not interfere with Comet assay data when this technique is used for human biomonitoring.
Resumo:
The modifying potential of prior administration of an aqueous extract of the mushroom Agaricus blazei Murrill (Agaricaceae) (Ab) on hepatotoxicity induced by different doses of diethylnitrosamine (DEN) in male Wistar rats was evaluated. During 2 weeks, animals of groups G3 (Ab+DEN50), G5 (Ab+DEN100), G7 (Ab+DEN200), and G8 (Ab-treated) were treated with the A. blazei through drinking water. After this period, groups G2 (DEN50), G3 (Ab+DEN50), G4 (DEN100) G5 (Ab+DEN100), G6 (DEN200), and G7 (Ab+DEN200) were given a single i.p. injection of 50, 100 and 200 mg/kg of DEN, respectively, while groups G1 (nontreated) and G8 (Ab-treated) were treated with 0.9% NaCl only. All animals were killed 48 h after DEN or NaCl treatments. The hepatocyte replication rate was estimated by the index of the proliferating cell nuclear antigen (PCNA) positive hepatocytes and the appearance of putative preneoplastic hepatocytes through expression of the enzyme glutathione S-transferase placental form (GSTP). After DEN-treatment, ALT levels, PCNA labeling index, and the number of GST-P positive hepatocytes were lower in rats that received A. blazei treatment and were exposed to 100 mg/kg of DEN. Our findings suggest that previous treatment with A. blazei exerts a hepatoprotective effect on both liver toxicity and hepatocarcinogenesis process induced by a moderately toxic dose of DEN. (C) 2002 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Among athletes strenuous exercise, dehydration and gastric emptying (GE) delay are the main causes of gastrointestinal (GI) complaints, whereas gut ischemia is the main cause of their nausea, vomiting, abdominal pain and (blood) diarrhea. Additionally any factor that limits sweat evaporation, such as a hot and humid environment and/or body dehydration, has profound effects on muscle glycogen depletion and risk for heat illness. A serious underperfusion of the gut often leads to mucosal damage and enhanced permeability so as to hide blood loss, microbiota invasion (or endotoxemia) and food-born allergen absorption (with anaphylaxis). The goal of exercise rehydration is to intake more fluid orally than what is being lost in sweat. Sports drinks provide the addition of sodium and carbohydrates to assist with intestinal absorption of water and muscle-glycogen replenishment, respectively. However GE is proportionally slowed by carbohydrate-rich (hyperosmolar) solutions. on the other hand, in order to prevent hyponatremia, avoiding overhydration is recommended. Caregiver's responsibility would be to inform athletes about potential dangers of drinking too much water and also advise them to refrain from using hypertonic fluid replacements.
Resumo:
Various studies have shown that lycopene, a non-provitamin A carotenoid, exerts antioxidant, antimutagenic and anticarcinogenic activities in different in vitro and in vivo systems. However, the results concerning its chemopreventive potential on rat hepatocarcinogenesis are ambiguous. The aim of the present study was to investigate the antigenotoxic and anticarcinogenic effects of dietary tomato oleoresin adjusted to lycopene concentration at 30, 100 or 300ppm (administered 2 weeks before and during or 8 weeks after carcinogen exposure) on liver of male Wistar rats treated with a single intraperitoneal dose of 20 or 100 mg/kg of diethylnitrosamine (DEN), respectively. The level of DNA damage in liver cells and the development of putative preneoplastic single hepatocytes, minifoci and foci of altered hepatocytes (FHA) positive for glutathione S-transferase (GST-P) were used as endpoints. Significant reduction of DNA damage was detected when the highest lycopene concentration was administered before and during the DEN exposure (20 mg/kg). However, the results also showed that lycopene consumption did not reduce cell proliferation in normal hepatocytes or the growth of initiated hepatocytes into minifoci positive for GST-P during early regenerative response after 70% partial hepatectomy, or the number and area of GST-P positive FHA induced by DEN (100 mg/ kg) at the end of week 10. Taken together, the data suggest a chemopreventive effect of tomato oleoresin against DNA damage induced by DEN but no clear effectiveness in initiating or promoting phases of rat hepatocarcinogenesis. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An investigation is reported on the statistical model of imbibition curves of the seeds of Senna occidentalis Link. (Caesalpiniaceae), up to Phase II (start of root emission) in osmotic potential levels (0; -0.2; -0.4 and -0.6 MPa), induced NaCl or PEG 6000. The statistical model for both solutions was y = a [1 b exp(-cx)] where y is the fresh matter of seed in g, and x the time of evaluation in h. The analysis of variance of the estimated parameters, showed that with the NaCl solution, the -0.4 and -0.6 MPa levels differed significantly from the 0 and -0.2 MPa levels, and that with the PEG solution, the -0.6 MPa differed from the rest. Prolongation of Phase II occurred as the potential decreased, with both solutions. More reduction in water uptake and prolongation of this phase occurred with the PEG treatment.
Resumo:
Phospholipases A(2) (PLA(2)s) are commonly found in snake venoms from Viperidae, Hydrophidae and Elaphidae families and have been extensively studied due to their pharmacological and physiopathological effects in living organisms. This article reports a review on natural and artificial inhibitors of enzymatic, toxic and pharmacological effects induced by snake venom PLA(2)s. These inhibitors act on PLA(2)S through different mechanisms, most of them still not completely understood, including binding to specific domains, denaturation, modification of specific amino acid residues and others. Several substances have been evaluated regarding their effects against snake venoms and isolated toxins, including plant extracts and compounds from marine animals, mammals and snakes serum plasma, in addition to poly or monoclonal antibodies and several synthetic molecules. Research involving these inhibitors may be useful to understand the mechanism of action of PLA(2)s and their role in envenomations caused by snake bite. Furthermore, the biotechnological potential of PLA(2) inhibitors may provide therapeutic molecular models with antiophidian activity to supplement the conventional serum therapy against these multifunctional enzymes.
Bioinformatical and in vitro approaches to essential oil-induced matrix metalloproteinase inhibition
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Propolis is one of the hive products that has been used extensively in folk medicine, due to its several biological and pharmacological properties. Besides, propolis-containing products have been intensely marketed by the pharmaceutical industry and health-food stores. This work was carried out in order to investigate whether propolis treatment could revert the metabolic alterations of streptozotocin-induced diabetic rats. Animals were kept in metabolic cages and diabetes was induced by a single dose of streptozotocin (35 mg/kg, IV). After a week, rats with glycemia higher than 230 mg/dL were divided into two groups and treated with ethanolic extract of propolis (10 and 90 mg/kg, PO) for seven days. Glycemia and free fatty acids were determined, as well as food and water intake, body weight and urine volume were registered weekly. Data showed no significant differences in the analyzed variables. Based on these results, one may conclude that propolis had no effects after diabetes establishment, in our conditions assays. Further assays with different concentrations of propolis and periods of administration should be carried out in order to evaluate its therapeutic potential in this disease.
Resumo:
Ethnopharmacological relevance: Uncaria tomentosa (Willd.) DC (Rubiaceae) is a species native to the Amazon rainforest and surrounding tropical areas that is endowed with immunomodulatory properties and widely used around the world. In this study we investigated the immunomodulatory potential of Uncaria tomentosa (UT) aqueous-ethanol extract on the progression of immune-mediated diabetes.Materials and methods: C57BL/6 male mice were injected with MLDS (40 mg/kg) and orally treated with UT at 10-400 mg/kg during 21 days. Control groups received MLDS alone or the respective dilution vehicle. Pancreatic mononuclear infiltrate and beta-cell insulin content were analyzed by HE and immunohistochemical staining, respectively, and measured by digital morphometry. Lymphocyte immunophenotyping and cytokine production were determined by flow cytometry analysis.Results: Treating the animals with 50-400 mg/kg of UT caused a significant reduction in the glycemic levels, as well as in the incidence of diabetes. The morphometric analysis of insulitis revealed a clear protective effect. Animals treated with UT at 400 mg/kg presented a higher number of intact islets and a significant inhibition of destructive insulitis. Furthermore, a significant protection against the loss of insulin-secreting presented beta-cells was achieved, as observed by a careful immunohistochemical evaluation. The phenotypic analysis indicated that the groups treated with higher doses (100-400 mg/kg) presented CD4(+) and CD8(+) T-cell values similar to those observed in healthy animals. These same higher doses also increased the number of CD4(+)CD25(+)Foxp3(+) regulatory T-cells. Moreover, the extract modulated the production of Th1 and Th2, with increased levels of IL-4 and IL-5.Conclusions: The extract was effective to prevent the progression of immune-mediated diabetes by distinct pathways. (C) 2011 Elsevier B.V. All rights reserved.