550 resultados para Distribuição de tensões
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
The present work aims to study the possible causes of cracks founded and recovered in translation cars of ore Forklift / ore Reclaimer. To identify the possible causes of cracks observed on the equipment it was used a static approach analysis, using a finite element method as an analysis tool, using a specific structural analysis program. After making the model, a strain gage measurement was necessary because there may be significant amounts of masses of non-structural components that were not modeled and were not available in the drawings, as well as fouling ore. With the calibrated model it was processed analyses with the load cases of dead load, product, wind and excavation. After the processing, it was observed that none of these load cases resulted in values that caused the crack, so another three hypotheses were tested: depression and misalignment, jacking and translation of only three cars. Of these three hypotheses it was observed that the jacking coud be the cause of the cracks, because the distribution of stress. Due to the miss of parameters, like the height utilized in this process, it was not possible to affirm the real stress level
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The design of implant structure is still a questioning to the professionals, while their variations can to influence of stress distribution favorably to bone. Therefore, the aim of study was to review addressing the topic of osseointegrated implants design establishing answers for the patient oral rehabilitation, according variations existing on the market. It was conducted a detailed search strategy by the PubMed/ Medline and Bireme, it was used as descriptors: “dental implants cylinder”; “dental implants thread”; “dental implants geometry”, until May 2014. From 798 articles, after review were selected 18 articles and 1 specific area book. The results were divided to compare design of implant and threads for further discussion and conclusions. Thus, conclude that the threads implants are best used because of its advantages with respect to the stress distribution and stability primary. The variations of the differents types of threads, have influence for stress distribution.
Resumo:
The dissatisfaction of the treatment with mandibular complete dentures in edentulous patients has been a constant problem in Dentistry. Often, the absence of stability and retention, resultants of a physiologic condition and alveolar ridge resorption, bring reduction of chewing force, speech problems and social life interference. In these cases, the rehabilitation over osseointegrated implants can be an effective and safe alternative of treatment. When it is not possible to put implants in appropriate number and disposition, it is necessary to make a simple and low costing prosthetic planning, which makes resurge the overdentures. Various implant supported attachment systems for overdentures have been developed in the dental market. Thus, intending to facilitate the professional choice, this study review the literature about attachment systems O’ring and bar- clip in its following aspect: retention level, stress distribution, hygiene complications and patient satisfaction.
Resumo:
The use of implants of greater length may be more favorable for the predictability of dental implants. This statement is relevant, since the cause of failures in dental implants are more related to biomechanical complications. The aim of this study was to evaluate the influence of increase of the length around the entire body of the implant. Six models were created with the presence of only one hexagonal implant (Master Screw connection, Implant Systems, São Paulo, Brazil) of 3.75 mm x 7.0 mm (Model A), 3.75 mm x 8.5 mm (Model B ), 3.75 mm x 10.0 mm (Model C) 3.75 mm x 11.5 mm (Model D) 3.75 mm x 13.0 mm (Model E) 3.75 mm x 15.0 mm (Model F) using the method of photoelasticity. The results were visualized through a qualitative analysis of stresses (number and intensity photoelastic fringes). The model A showed a pattern of less favorable stress distribution, the oblique loading was the most detrimental to the related structures. Conclusion: The increased length allowed for a better distribution of stresses. The oblique loading was more detrimental when compared to axial loading.
Resumo:
The aim of this study was to evaluate the biomechanical behavior of different implant connection types, by means of three-dimensional finite element analysis. 3 Three-dimensional models were created with a graphic modeling software: SolidWorks 2006 and Rhinoceros 4.0, and InVesalius (CTI, São Paulo, Brasil), the bone was obtained by computerized tomography of a sagittal section of the molar region. The model was composed by bone block with an implant (4 x 10 mm) (Conexão Sistemas de Prótese, São Paulo), with different implant connections: external hex, internal hex and Morse-taper with the corresponding prosthetic component Ucla or Morse-taper abutment. The Three-dimensional models were transferred to finite element software Femap 10.0 (Siemens PLM Software Inc., CA, USA), to generate a mesh, boundary conditions and loading. An axial (200N) and oblique load (100N) was applied on the occlusal surface of the crowns. Analyses were performed using the finite element software NEiNastran 9.0 (Noran Engineering, Inc., USA) and transferred to the Femap 10.0 to obtain the results; after the results were visualized using von Mises stress maps and Maximum stress principal. The results showed the stress distribution was similar between models, with a little superiority of Morse-taper connection. It was concluded that: the three connection types were biomechanical viable; The Morse-taper connection presented the better internal stress distribution; there was not significant biomechanical differences on the bone.
Resumo:
The concept of switching platform is the use of an implant by platform wider than the abutment. Recently, researches have shown that this type of dental implant design tends to offer a higher preservation of crestal bone when compared to the traditional pattern of bone loss. The present study aims to perform a critical review on the switching platform concept establishing possible advantages of the technique. A search was performed on Medline/Pubmed about the topic “dental implant” and “platform switching”, and after applying inclusion criteria 40 studies were selected. The literature on longevity present prospective studies that show less bone loss, studies in biomechanics exhibit better or similar stress distribution around the bone crest, however, is not yet defined the role of the biological width. Thus, studies of longevity, and randomized prospective studies are of a great relevance to be performed in order to confirm the benefits of this technique and to establish a protocol indication. It is possible, based on this literature review, to conclude that longitudinal and randomized studies show that the platform switching implants have longevity and less bone loss. Biomechanically, the technique is possible.
Resumo:
The alveolar ridge shape plays an important role in predicting the demand on the support tooth and alveolar bone in the removable partial denture (RPD) treatment. However, these data are unclear when the RPD is associated with implants. This study evaluated the influence of the alveolar ridge shape on the stress distribution of a free-end saddle RPD partially supported by implant using 2-dimensioanl finite element analysis (FEA). Four mathematical models (M) of a mandibular hemiarch simulating various alveolar ridge shapes (1-distal desceding, 2- concave, 3-horizontal and 4-distal ascending) were built. Tooth 33 was placed as the abutment. Two RPDs, one supported by tooth and fibromucosa (MB) and other one supported by tooth and implant (MC) were simulated. MA was the control (no RPD). The load (50N) were applied simultaneously on each cusp. Appropriate boundary conditions were assigned on the border of alveolar bone. Ansys 10.0 software was used to calculate the stress fields and the von Mises equivalent stress criteria (σvM) was applied to analyze the results. The distal ascending shape showed the highest σvM for cortical and medullar bone. The alveolar ridge shape had little effect on changing the σvM based on the same prosthesis, mainly around the abutment tooth.
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)