139 resultados para Dentine
Tensile bond strength: Evaluation of four current adhesive systems in abraded enamel and deep dentin
Resumo:
This study aimed to evaluate the tensile bond strength of adhesive systems in abraded enamel and deep dentin of the occlusal surface of forty human molar teeth. Enamel surfaces as well as the rest of the teeth were coated with epoxy resin and regularized and polished with silicon carbide sandpapers. The 40 teeth were randomized into eight groups of five teeth per group. Four groups were assigned to have deep dentin as the dental substrate and the other four had abraded enamel as the substrate for the adhesives to be tested. The adhesives being tested were the total etching Single Bond: SB, the self-etching Clearfil SE bond: CSEB, self-etching One Up Bond F: OUBF and the self-etching Self-Etch Bond: SEB adhesives. The samples (teeth) were restored with composite resin and subjected to a traction assay. The results were statistically analyzed using the ANOVA and TUKEY tests. The total etching SB adhesive system had the greatest bonding strength of all the adhesives tested, on both dental substrates (20.1 MegaPascals (MPa) on abraded enamel and 19.4 MPa on deep dentin). Of the self-etching dental adhesives tested, CSEB had the greatest bonding strength on both substrates (14.6 MPa on abraded enamel and 15.4 MPa on deep dentin). Both OUBF (11.0 MPa for enamel, 13.1 MPa for dentin) and SEB (10.2 MPa for enamel, 12.6 MPa for dentin) showed comparable bonding strengths without any significant differences for either substrate Thus, the total etching SB adhesive system had better bonding strength than the other self-etching adhesives used, regardless of the dental substrate to which the adhesives had been bonded.
Resumo:
Objective: To evaluate the influence of three adhesive systems on the bond strength of fiber post luted to root dentine. The hypothesis was that the bond strength is influenced by the adhesive system. Method: The canals of thirty single-root bovine roots (16mm in length) were prepared using the preparation drill (FGM) until 12mm. 14 mm of each root was embedded with acrylic resin and the specimens were allocated into three groups (n=10), considering the factor adhesive (3 levels): Gr1- Scotchbond Multipurpose Plus (3M ESPE), Gr2- One Step (Bisco) and Gr3- Excite DSC (Ivoclar Vivadent). The adhesive systems were applied using a microbrush, according to the manufacture's recommendations. The fiber posts (White Post DC, FGM) were luted with dual resin cement (All-Cem,FGM). After, the cores with composite resin (Llis, FGM) were made and each set of root/post/core was submitted to the mechanical cycling (Erios, Brazil) (10 6 cycles, 84N, 4 Hz, inclination of 45 o, 37 oC, water). Each specimen was cut in 4 samples (1.8mm in thickness), which were submitted to the push-out test in a universal testing machine (ServoPulser - Shimadzu) (50Kgf, 1mm/min). The data (MPa) were analyzed using ANOVA (1-way) and Tukey test (5%). Results: The factor adhesive (P=0.00352) influenced the bond strength significantly (ANOVA). Gr1 (6.8±3.8 MPa) a presented higher bond strength values than Gr2 (3.1±1.5 MPa) b and similar to Gr3 (4.4±3.3) a,b. Moreover, Gr3 and Gr2 were similar between them (Tukey). The hypothesis was accepted. Conclusion: Based on the results it was concluded that chemical and dual polymerization adhesive system should be used for the adhesive luting fiber post procedures.
Resumo:
Objectives: To evaluate: (1) the in vitro antibacterial, cytotoxic and mechanical properties of a resin-modified glass ionomer cement (RMGIC) containing different concentrations of chlorhexidine (CHX) and (2) the in vivo microbiologic action of the best concentration of CHX associated with the RMGIC applied on remaining dentine after indirect pulp treatment (IPT). Methods: For the in vitro studies, RMGIC was associated with 0.2, 0.5, 1.25 and 2.5% CHX. Microbiologic evaluation consisted of an agar diffusion test on cariogenic bacteria for 24 h. Odontoblast-like cell metabolism and morphology analyses measured the cytotoxic effects of the RMGIC groups after 24 h. The same groups were submitted to compressive and diametral tensile strength. The in vivo treatment consisted of IPT using an RMGIC associated with the best CHX concentration. Clinical and microbiologic evaluations were performed before and after 3 months. Results: The use of 1.25% CHX significantly improved the antibacterial effects of the evaluated RMGIC, without causing any detrimental effects to the odontoblast-like cells and on the mechanical properties. This RMGIC and CHX combination completely eliminated mutans streptococci after 3 months of IPT. Conclusion: The RMGIC and 1.25% CHX mixture showed great biological and mechanical behaviour and could be a good treatment against caries progression. Clinical significance: The association of CHX with a liner RMGIC opens a new perspective for arresting residual caries after IPT. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the present study was to evaluate the efficacy of QMiX, SmearClear, and 17% EDTA for the debris and smear layer removal from the root canal and its effects on the push-out bond strength of an epoxy-based sealer by scanning electron microscopy (SEM). Forty extracted human canines (n=10) were assigned to the following final rinse protocols: G1-distilled water (control), G2-17% EDTA, G3-SmearClear, and G4-QMiX. The specimens were submitted to a SEM analysis to evaluate the presence of debris and smear layer, respectively, in the apical or cervical segments. In sequence, forty extracted human maxillary canines with the root canals instrumented were divided into four groups (n=10) similar to the SEM analysis study. After the filling with AH Plus, the roots were transversally sectioned to obtain dentinal slices. The specimens were submitted to a push-out bond strength test using an electromechanical testing machine. The statistical analysis for the SEM and push-out bond strength studies were performed using the Kruskal-Wallis and Dunn tests (α=5%). There was no difference among the G2, G3, and G4 efficacy in removing the debris and smear layer (P>0.05). The efficacy of these groups was superior to the control group. The push-out bond strength values of G2, G3, and G4 were superior to the control group. The ability to remove the debris and smear layer by SmearClear and QMiX was as effective as the 17% EDTA. The final rinse with these solutions promoted similar push-out bond strength values. © 2013 Wiley Periodicals, Inc.
Resumo:
Aim: To evaluate antibiofilm activity against Enterococcus faecalis, pH and solubility of AH Plus, Sealer 26, Epiphany SE, Sealapex, Activ GP, MTA Fillapex (MTA-F) and an experimental MTA-based Sealer (MTA-S). Methodology: Sealer samples were manipulated and stored for 2 or 7 days. Prepared sealers were evaluated by a modified direct contact test (DCT) for 5 h, 10 h or 15 h with biofilm previously induced on bovine dentine for 14 days. In the control group, the biofilm was not exposed to the sealers. The number of colony-forming units (CFU mL-1) in the remaining biofilm was determined. Sealer solubility was assessed by the percentage of mass loss after 15 h of immersion in distilled water. Sealer pH was measured at 5 h, 10 h and 15 h. Statistical analysis was performed using Kruskal-Wallis and Dunn or anova and Tamhane's T2 tests, at 5% significance. Results: At 2 days post-manipulation, the DCT showed that Sealapex and MTA-F were associated with a reduction in the number of bacteria in all 3 contact periods evaluated, compared with the control group (P < 0.05). At 7 days, Sealapex had the greatest antibiofilm action at 10 h and 15 h. Sealapex had the highest pH values 2 and 7 days post-manipulation. Regarding the solubility, at 2 days the highest values were observed for MTA-F, MTA-S, Sealapex and Activ GP (P < 0.05). At 7 days, MTA-S and MTA-F had greater solubility than the other materials (P < 0.05). AH Plus had the lowest solubility for both post-manipulation periods (P < 0.05). Conclusion: Sealapex and MTA-F were associated with a reduction in the number of bacteria in biofilms and had greater solubility. The high solubility and pH may be related to the antibacterial activity of these materials. © 2012 International Endodontic Journal.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)