100 resultados para Degradation process


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation behaviour of SnO(2)-based varistors (SCNCr) due to current pulses (8/20 mu s) is reported here for the first time in comparison with the ZnO-based commercial varistors (ZnO). Puncturing and/or cracking failures were observed in ZnO-based varistors possessing inferior thermo-mechanical properties in comparison with that found in a SCNCr system free of failures. Both systems presented electric degradation related to the increase in the leakage current and decrease in the electric breakdown field, non-linear coefficient and average value of the potential barrier height. However, it was found that a more severe degradation occurred in the ZnO-based varistors concerning their non-ohmic behaviour, while in the SCNCr system, a strong non-ohmic behaviour remained after the degradation. These results indicate that the degradation in the metal oxide varistors is controlled by a defect diffusion process whose rate depends on the mobility, the concentration of meta-stable defects and the amount of electrically active interfaces. The improved behaviour of the SCNCr system is then inferred to be associated with the higher amount of electrically active interfaces (85%) and to a higher energy necessary to activate the diffusion of the specific defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical processes in industrial effluents have been studied as a means to obtain higher efficiency in wastewater treatment. Heterogeneous photocatalysis appears as a low-cost alternative through the use of lower wattage lamps and thermal TiO2 films. Photocatalysis became a clean process for water treatment due to hydroxyl radicals generated on semiconductor surface. Such radicals are able to degrade several organic compounds. This study used different electrodes and analytical methods for degradation of phenol molecules to reduce treatment costs, improve efficiency, and identify compounds formed during the decomposition of phenolic molecules. Thermal growth of TiO2 film was observed on the titanium electrode in rutile form. Application of an electrical potential on the Ti/TiO2 working electrode increases efficiency in reducing concentration of phenol after photocatalytic treatment. Still, high energy radiation (UVC) showed best degradation rates in photolytic process. Different compounds formed during the degradation of phenol were also identified in the UVC-PE treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photodegradation of the pharmaceuticals amoxicillin (AMX), bezafibrate (BZF) and paracetamol (PCT) in aqueous solutions via the photo-Fenton process was investigated under black-light and solar irradiation. The influences of iron source, initial H2O2 concentration and matrix (distilled water and sewage treatment plant effluent) on degradation efficiency were discussed in detail. The results showed that (i) the degradation of the drugs was favored in the presence of potassium ferrioxalate (FeOx) in comparison to Fe(NO3)(3): (ii) the increase of the H2O2 concentration improved the efficiency of AMX and BZF oxidation; however, the same was not observed for PCT: (iii) the influence of the matrix was observed for the degradation of BZF and PCT: (iv) under solar irradiation, the oxidation of the BZF and PCT is faster than under black-light irradiation. All these pharmaceuticals can be efficiently degraded employing the process evaluated. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work the use of a coupled process, soil washing and photo-Fenton oxidation, was investigated for remediation of a soil contaminated with p.p'-DDT (DDT) and p.p'-DDE (DDE), and a soil artificially contaminated with diesel. In the soil washing experiments,Triton X-100(TX-100) aqueous solutions were used at different concentrations to obtain wastewaters with different compositions. Removal efficiencies of 66% (DDT). 80% (DDE) and 100% (diesel) were achieved for three sequential washings using a TX-100 solution strength equivalent to 12 times the effective critical micelle concentration of the surfactant (12 CMC(eff)). The wastewater obtained was then treated using a solar photo-Fenton process. After 6 h irradiation, 99, 95 and 100% degradation efficiencies were achieved for DDT, DDE and diesel, respectively. In all experiments, the concentration of dissolved organic carbon decreased by at least 95%, indicating that residual concentration of contaminants and/or TX-100 in the wastewater was very low. The co-extraction of metals was also evaluated. Among the metals analyzed (Pb, Cr, Ni, Cu. Cd, Mn and Co), only Cr and Mn were detected in the wastewater at concentrations above the maximum value permitted by current Brazilian legislation. The effective removal of contaminants from soil by the TX-100 washing process, together with the high degradation efficiency of the solar photo-Fenton process, suggests that this procedure could be a useful option for soil remediation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First, the effect of ferrioxalate or iron nitrate on the photo-Fenton degradation efficiency of the pharmaceuticals lincomycin (LCM) and diazepam (DZP) was evaluated. The degradation of both pharmaceuticals was improved in the presence of ferrioxalate in relation to Fe(NO(3)), either under black-light or solar irradiation. The degradation of the pharmaceuticals was then evaluated when present in an effluent from sewage treatment plant (STP) under black-light irradiation. Pharmaceuticals oxidation was not influenced by the matrix, since very similar results were obtained when compared to the experiments carried out in distilled water. However, DOC removal was slightly affected by the matrix, due probably to the generation of recalcitrant intermediates during effluent photodegradation and to the high content of inorganic carbon of STP effluent. Even so, high DOC removal percentages were achieved, 65% for lincomycin and 80% for diazepam after 60 min irradiation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)