74 resultados para Closing the loop
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In recent years, many researchers in the field of biomedical sciences have made successful use of mathematical models to study, in a quantitative way, a multitude of phenomena such as those found in disease dynamics, control of physiological systems, optimization of drug therapy, economics of the preventive medicine and many other applications. The availability of good dynamic models have been providing means for simulation and design of novel control strategies in the context of biological events. This work concerns a particular model related to HIV infection dynamics which is used to allow a comparative evaluation of schemes for treatment of AIDS patients. The mathematical model adopted in this work was proposed by Nowak & Bangham, 1996 and describes the dynamics of viral concentration in terms of interaction with CD4 cells and the cytotoxic T lymphocytes, which are responsible for the defense of the organism. Two conceptually distinct techniques for drug therapy are analyzed: Open Loop Treatment, where a priori fixed dosage is prescribed and Closed Loop Treatment, where the doses are adjusted according to results obtained by laboratory analysis. Simulation results show that the Closed Loop Scheme can achieve improved quality of the treatment in terms of reduction in the viral load and quantity of administered drugs, but with the inconvenience related to the necessity of frequent and periodic laboratory analysis.
Resumo:
We investigate the possibility that four-fermion contact interactions give rise to the observed deviation from the standard model prediction for the weak charge of cesium, through one-loop contributions. We show that the presence of loops involving the third generation quarks can explain such a deviation.
Resumo:
It is proven that the pure spinor superstring in an AdS5 × S5 background remains conformally invariant at one loop level in the sigma model perturbation theory. © SISSA/ISAS 2003.
Resumo:
The massless 4-point one-loop amplitude computation in the pure spinor formalism is shown to agree with the computation in the RNS formalism. © SISSA 2006.
Resumo:
Uncoupling proteins (UCPs) are specialized mitochondrial transporter proteins that uncouple respiration from ATP synthesis. In this study, cDNA encoding maize uncoupling protein (ZmPUMP) was expressed in Escherichia coli and recombinant ZmPUMP reconstituted in liposomes. ZmPUMP activity was associated with a linoleic acid (LA)-mediated H+ efflux with Km of 56.36 ± 0.27 μM and Vmax of 66.9 μmol H+ min-1 (mg prot)-1. LA-mediated H+ fluxes were sensitive to ATP inhibition with Ki of 2.61 ± 0.36 mM (at pH 7.2), a value similar to those for dicot UCPs. ZmPUMP was also used to investigate the importance of a histidine pair present in the second matrix loop of mammalian UCP1 and absent in plant UCPs. ZmPUMP with introduced His pair (Lys155His and Ala157His) displayed a 1.55-fold increase in LA-affinity while its activity remained unchanged. Our data indicate conserved properties of plant UCPs and suggest an enhancing but not essential role of the histidine pair in proton transport mechanism. © 2006 Elsevier Inc. All rights reserved.
Resumo:
We examined the variation in mitochondrial DNA by sequencing the D-loop region in wild and domestic (large-white breed) pigs, in hybrids between domestic and wild pigs, and in Monteiro pigs. A D-loop fragment of approximately 330 bp was amplified by PCR. Sequencing of DNA amplicons identified haplotypes previously described as European and Asian types. Monteiro pigs and wild pigs had European haplotypes and domestic pigs had both European and Asian haplotypes. ©FUNPEC-RP.
Resumo:
We compute the one-loop beta functions for the Type II superstring using the pure spinor formalism in a generic supergravity background. It is known that the classical pure spinor BRST symmetry puts the background fields on-shell. In this paper we show that the one-loop beta functions vanish as a consequence of the classical BRST symmetry of the action. © SISSA 2007.
Resumo:
Using the results recently obtained for computing integrals over (non-minimal) pure spinor superspace, we compute the coefficient of the massless two-loop four-point amplitude from first principles. Contrasting with the mathematical difficulties in the RNS formalism where unknown normalizations of chiral determinant formulæ force the two-loop coefficient to be determined only indirectly through factorization, the computation in the pure spinor formalism can be smoothly carried out. © SISSA 2010.
Resumo:
Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) [1] to be typed using SNaPShotTM (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) [1] was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010) [1]. All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. © 2013 Elsevier B.V.
Resumo:
Different mathematical methods have been applied to obtain the analytic result for the massless triangle Feynman diagram yielding a sum of four linearly independent (LI) hypergeometric functions of two variables F-4. This result is not physically acceptable when it is embedded in higher loops, because all four hypergeometric functions in the triangle result have the same region of convergence and further integration means going outside those regions of convergence. We could go outside those regions by using the well-known analytic continuation formulas obeyed by the F-4, but there are at least two ways we can do this. Which is the correct one? Whichever continuation one uses, it reduces a number of F-4 from four to three. This reduction in the number of hypergeometric functions can be understood by taking into account the fundamental physical constraint imposed by the conservation of momenta flowing along the three legs of the diagram. With this, the number of overall LI functions that enter the most general solution must reduce accordingly. It remains to determine which set of three LI solutions needs to be taken. To determine the exact structure and content of the analytic solution for the three-point function that can be embedded in higher loops, we use the analogy that exists between Feynman diagrams and electric circuit networks, in which the electric current flowing in the network plays the role of the momentum flowing in the lines of a Feynman diagram. This analogy is employed to define exactly which three out of the four hypergeometric functions are relevant to the analytic solution for the Feynman diagram. The analogy is built based on the equivalence between electric resistance circuit networks of types Y and Delta in which flows a conserved current. The equivalence is established via the theorem of minimum energy dissipation within circuits having these structures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We construct a centerless W-infinity type of algebra in terms of a generator of a centerless Virasoro algebra and an abelian spin 1 current. This algebra conventionally emerges in the study of pseudo-differential operators on a circle or alternatively within KP hierarchy with Watanabe's bracket. Construction used here is based on a spherical deformation of the algebra W ∞ of area preserving diffeomorphisms of a 2-manifold. We show that this deformation technique applies to the two-loop WZNW and conformal affine Toda models, establishing henceforth W ∞ invariance of these models.