126 resultados para CATALYZED COPOLYMERIZATION
Resumo:
Linear low density polyethylene (LLDPE) with different branching contents were prepared from ethylene, without the addition of alpha-olefin comonomer, using a combination of catalyst precursors {Tp(Ms)}NiCl (1) (Tp(Ms) = hydridotris(3-mesitylpyrazol-1-yl)) and Cp2ZrCl2 (2) activated with MAO/TMA (1:1) in toluene at 0degreesC and by varying the nickel loading mole fraction (x(Ni)). The polymerization results showed that the turnover frequencies are strongly dependent on the x(Ni) varying from 6.6 x 10(3) to 32.1 x 10(3) mol[C2H4]/mol[Zr] h. The C-13 NMR spectra of the copolymers showed that the branch contents of the polymers increase as the x(Ni) increase in the medium promoting the production of polymers with a wide range of melting point (T-m) (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and thus drugs that inhibit human PNP activity have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Besides, the purine salvage pathway is the only possible way for apicomplexan parasites to obtain the building blocks for RNA and DNA synthesis, which makes PNP from these parasites an attractive target for drug development against diseases such as malaria. Hence, a number of research groups have made efforts to elucidate the mechanism of action of PNP based on structural and kinetic studies. It is conceivable that the mechanism may be different for PNPs from diverse sources, and influenced by the oligomeric state of the enzyme in solution. Furthermore, distinct transition state structures can make possible the rational design of specific inhibitors for human and apicomplexan enzymes. Here, we review the current status of these research efforts to elucidate the mechanism of PNP-catalyzed chemical reaction, focusing on the mammalian and Plamodium falciparum enzymes, targets for drug development against, respectively, T-Cell and Apicomplexan parasites-mediated diseases.
Resumo:
1-Benzoyl-3-benzylguanidine and 1-benzoyl-3-benzyl-O-ethylisourea were synthesized in good yields (68 and 76%, respectively) from 1-benzoyl-3-benzylthiourea and benzoyl-ethylthiocarbamate in dry media conditions using KF-Al2O3 under microwave irradiation. Strong nucleophilic amines promoted the sulfur elimination by attack on the thiocarbonyl group in both thiourea and thiocarbamates to afford guanidines and isourea, respectively. Transesterification products were obtained from p-TsOH catalyzed reaction of thiocarbamate with alcohols under MW-solvent-free conditions. Very important non-purely thermal MW specific effects were evidenced and attributed to stabilization by coulombic interactions between materials and waves. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Waste frying oil has been used to optimize the production of biodiesel. Biodiesel was prepared through sodium ethoxide catalyzed methanolysis from the transesterification of recycled waste frying oil. Optimization of the transesterification reaction for biodiesel production was carried out by means of statistical analyses using ANOVA. The optimum conditions for reaction were the following: a oil methanol mole ratio of 1:9, temperature of 50 degrees C, catalyst mass fraction of 0.9 %, and reaction time of 40 min, which enabled a yield of 98.7 % determined by gas chromatography/mass spectrometry (GC/MS) analysis. The density and viscosity of biodiesel/diesel blends have been determined as a function of composition at several temperatures.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Diurea cross-linked bridged silsesquioxanes (BSs) C(10)C(11)C(10) derived from organosilane precursors, including decylene chains as side spacers and alkylene chains with variable length as central spacers (EtO)(3)Si- (CH(2))(10)-Y(CH(2))(n)-Y-(CH(2))(10)-Si(OEt)(3) (n = 7, 9-12; Y = urea group and Et = ethyl), have been synthesized through the combination of self-directed assembly and an acid-catalyzed sol gel route involving the addition of dimethylsulfoxide (DMSO) and a large excess of water. This new family of hybrids has enabled us to conclude that the length of the side spacers plays a unique role in the structuring of alkylene-based BSs, although their morphology remains unaffected. All the samples adopt a lamellar structure. While the alkylene chains are totally disordered in the case of the C(10)C(7)C(10) sample, a variable proportion of all-trans and gauche conformers exists in the materials with longer central spacers. The highest degree of structuring occurs for n = 9. The inclusion of decylene instead of propylene chains as side spacers leads to the formation of a stronger hydrogen-bonded urea-urea array as evidenced by two dimensional correlation Fourier transform infrared spectroscopic analysis. The emission spectra and emission quantum yields of the C(10)C(n)C(10) Cm materials are similar to those reported for diurea cross-linked alkylene-based BSs incorporating propylene chains as side spacers and prepared under different experimental conditions. The emission of the C(10)C(n)C(10) hybrids is ascribed to the overlap of two distinct components that occur within the urea cross-linkages and within the siliceous nanodomains. Time-resolved photoluminescence spectroscopy has provided evidence that the average distance between the siliceous domains and the urea cross-links is similar in the C(10)C(n)C(10) BSs and in oxyethylene-based hybrid analogues incorporating propylene chains as side spacers (diureasils), an indication that the longer side chains in the former materials adopt gauche conformations. It has also allowed us to demonstrate for the first time that the emission features of the urea-related component of the emission of alkylene-based BSs depend critically on the length of the side spacers.
Resumo:
The intra- and intermolecular rates of degradation of cephaclor were determined with and without hexadecyltrimethylammonium bromide (CTABr). Micellar-derived spectral shifts were used to measure the association of the ionic forms as well as to determine the effect of CTABr on the apparent acid dissociation constant of the antibiotic. The rate of degradation of cephaclor increased with detergent and was salt sensitive. Micellar effects were analyzed quantitatively within the frame-work of the speudophase ion exchange model. All experimental data were fitted to this model which was used to predict the combined effects of pH and detergent concentration. Micelles increased the rate of OH- attack on cephaclor; most of the effect was due to the concentration of reagents in the micellar pseudophase. The intramolecular degradation was catalyzed 25-fold by micelles, and a working hypothesis to rationalize this effect is proposed. The results demonstrate that quantitative analysis can be utilized to assess and predict effects of detergents on drug stability.
Resumo:
Background: Glucosamine 6-phosphate deaminase from Escherichia coli is an allosteric hexameric enzyme which catalyzes the reversible conversion of D-glucosamine 6-phosphate into D-fructose 6-phosphate and ammonium ion and is activated by N-acetyl-D-glucosamine 6-phosphate. Mechanistically, it belongs to the group of aldose-ketose isomerases, but its reaction also accomplishes a simultaneous amination/deamination. The determination of the structure of this protein provides fundamental knowledge for understanding its mode of action and the nature of allosteric conformational changes that regulate its function. Results: The crystal structure of glucosamine 6-phosphate deaminase with bound phosphate ions is presented at 2.1 Å resolution together with the refined structures of the enzyme in complexes with its allosteric activator and with a competitive inhibitor. The protein fold can be described as a modified NAD-binding domain. Conclusions: From the similarities between the three presented structures, it is concluded that these represent the enzymatically active R state conformer. A mechanism for the deaminase reaction is proposed. It comprises steps to open the pyranose ring of the substrate and a sequence of general base-catalyzed reactions to bring about isomerization and deamination, with Asp72 playing a key role as a proton exchanger.
Resumo:
The classic hydrolysis procedure for quantification of resin-bound aminoacyl and peptidyl groups with 12 N HCl: propionic acid was recvaluated by studying the influence of the nature of the resin and the resin-bound group. Their stability during acid hydrolysis was dependent on the C-terminal amino acid, and the order of acid stability was Phe > Val > Gly. Otherwise, the dipeptides Ala-Gly, Ala-Val, and Ala-Phe displayed enhanced rates of hydrolysis of the resin if compared with their parent aminoacyl groups. Amongthe resins assayed, the order of acid stability was: benzhydrylamine-resin > p-methylbenzhydrylamine-resin ≅4-(oxymethyl)-phenylacetamidomethyl-resin > chloromethyl-copolymer of styrene-1%-divinylbenzene. Important for peptide synthesis method, the findings demonstrate that longer hydrolysis times than previously recommended in the literature (1 h at 130°C and 15 min at 160°C for peptides attached to the chloromethyl-copolymer of styrene-1%-divinylbenzene) are necessary for the quantitative acid-catalyzed cleavage of some resin-bound groups. The observed broad range of hydrolysis time varied from less than 1 h to about 100 h.
Resumo:
We model the heterogeneously catalyzed oxidation of CO over a Pt surface. A phase diagram analysis is used to probe the several steady state regimes and their stability. We incorporate an experimentally observed 'slow' sub-oxide kinetic step, thereby generalizing a previously presented model. In agreement with experimental data, stable, oscillatory and quasi-chaotic regimes are obtained. Furthermore, the inclusion of the sub-oxide step yields a relaxation oscillation regime. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. A genetic deficiency due to mutations in the gene encoding for human PNP causes T-cell deficiency as the major physiological defect. Inappropriate activation of T-cells has been implicated in several clinically relevant human conditions such as transplant tissue rejection, psoriasis, rheumatoid arthritis, lupus, and T-cell lymphomas. Human PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation. In addition, bacterial PNP has been used as reactant in a fast and sensitive spectrophotometric method that allows both quantitation of inorganic phosphate (Pi) and continuous assay of reactions that generate P i such as those catalyzed by ATPases and GTPases. Human PNP may therefore be an important biotechnological tool for P i detection. However, low expression of human PNP in bacterial hosts, protein purification protocols involving many steps, and low protein yields represent technical obstacles to be overcome if human PNP is to be used in either high-throughput drug screening or as a reagent in an affordable P i detection method. Here, we describe PCR amplification of human PNP from a liver cDNA library, cloning, expression in Escherichia coli host, purification, and activity measurement of homogeneous enzyme. Human PNP represented approximately 42% of total soluble cell proteins with no induction being necessary to express the target protein. Enzyme activity measurements demonstrated a 707-fold increase in specific activity of cloned human PNP as compared to control. Purification of cloned human PNP was achieved by a two-step purification protocol, yielding 48 mg homogeneous enzyme from 1 L cell culture, with a specific activity value of 80 U mg -1. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
OBJECTIVE: To carry out a retrospective study to determine whether human papillomavirus (HPV) infection and immunohistochemical expression of p53 and proliferating cell nuclear antigen (PCNA) are related to the risk of oral cancer. STUDY DESIGN: Fifty-seven oral biopsies, consisting of 30 oral squamous papillomas (OSPs) and 27 oral squamous cell carcinomas (OSCCs) were tested for the presence of HPV 6/11 and 16/18 by in situ hybridization using catalyzed signal amplification and in situ hybridization. p53 And PCNA expression was analyzed by immunohistochemistry and evaluated quantitatively by image analysis. RESULTS: Nineteen of the 57 oral lesions (33.3%) were positive for HPV. HPV 6/11 was found in 6 of 30 (20%) OSPs and 1 of 27 (3.7%) OSCCs. HPV 16/18 was found in 10 of 27 (37%) OSCCs and 2 of 30 (6.7%) OSPs. Sixteen of the 19 HPV-positive cases (84.2%) were p53 negative; 5 (9%) were HPV 6/11 and 11 (19%) HPV 16/18, with an inverse correlation between the presence of HPV DNA and p53 expression (P=.017, P < .05). PCNA expression appeared in 18 (94.7%) of HPV positive cases, showing that HPV 16/18 was associated with intensity of PCNA expression and with OSCCs (P=.037, P < .05). CONCLUSION: Quantitative evaluation of p53 by image analysis showed an inverse correlation between p53 expression and HPV presence, suggesting protein degradation. Image analysis also demonstrated that PCNA expression was more intense in HPV DNA 16/18 OSCCs. These findings suggest involvement of high-risk HPV types in oral carcinogenesis.
Resumo:
Human papillomavirus (HPV) is believed to promote the oncogenic process, and the correlation between viral oncoproteins and dysfunction of p16 INK4A tumor suppressor protein in oral lesions is controversial. To test the hypothesis that anogenital HPV types participate in disruption of the regulation of p16INK4A suppressor protein in oral lesions, we analyzed 46 oral biopsy specimens for the presence of HPV 6/11 and 16/18 by in situ hybridization (ISH) and for p16INK4A expression by immunohistochemistry (IHC). Eighteen (39%) of the 46 oral lesions were HPV-positive and 28 (61%) were HPV-negative. HPV 6/11 DNA was found in 5 (11%) and HPV 16/18 in 13 (28%) of 46 biopsies. Nine of the 18 HPV-positive oral lesions (50%), assessed by catalyzed signal amplification coupled to ISH (CSA-ISH), gave high-intensity p16INK4A immunostaining. Focal and diffuse patterns were observed in 11/13 (77%) lesions with HPV 16/18, focal immunopositivity in 3/5 (80%) with HPV 6/11, and negative or sporadic p16-labeling in 18/28 (64%) without the presence of HPV DNA. These results showed a strong association between overexpression of p16 protein and malignant oral lesions, mainly those infected by HPV 16/18. We can conclude that high-risk HPV types are associated with p16 overexpression, and p16 may serve as a biomarker in oral cancer related to high-risk HPV infection.