218 resultados para Blade of irrigation
Resumo:
With technological innovations, such as irrigation, the bean has been grown by producers who have the most varied levels of technology that, in suitable times, allows the planting great success in grain yield. The aim of this study was to evaluate the response of the dry bean to different managements of irrigation and nitrogen fertilization with no-tillage system, in Aquidauana - MS, Brazil. The experiment was conducted at the Universidade Estadual de Mato Grosso do Sul (UEMS), with the soil of the area classified as Alfisol, using the bean crop "Perola" sown on June 30, 2007. The experimental design was a randomized block split-plot consisting of three blocks and two replications within each block. The plots were composed of three management of irrigation, by the Class A pan method, using Hargreaves-Samani equation, and management by tensiometry (-40 kPa), with water replacement of 16.5 mm for all irrigation plots. The subplots consisted on four rates of nitrogen fertilization (0; 50; 100 and 150 kg ha(-1)), in which the nitrogen source was urea. It was concluded that the irrigation management through the Class A pan and Hargreaves-Samani equation conduced to higher grain yields of bean, 3031.11 and 3005.02 kg ha(-1) respectively.
Resumo:
Practical methods for land grading design of a plane surface for rectangular and irregularly shaped fields based on a least squares analysis are presented. The least squares procedure leads to a system of three linear equations with three unknowns for determination of the best-fit plane. The equations can be solved by determinants (Cramer's rule) using a procedure capable of solution by many programmable calculators. The detailed computational process for determining the equation of the plane and a simple method to find the centroid location of an irregular field are also given. An illustrative example and design instructions are included to demonstrate the application of the design procedure.
Resumo:
An adjusted F factor to compute pressure head loss in pipes having multiple, equally spaced outlets is derived for any given distance from the first outlet to the beginning of the pipe. The proposed factor is dependent on the number of outlets and is expressed as a function of the J. E. Christiansen's F factor. It may be useful to irrigation engineers to estimate friction in sprinkle and trickle irrigation laterals and manifolds, as well as gated pipes.
Resumo:
The coffee crop is expanding to new areas with not enough studies about its response to saline irrigation water. The initial growth of coffee plant was evaluated, in greenhouse at the Engineering Department of the Federal University of Lavras (UFLA), under different levels of irrigation water salinity. The completely randomized design was used with 6 treatments (S0 = 0.0 dS m -1, S1 = 0.6 dS m -1, S2 = 1.2 dS m -1, S3 = 1.8 dS m -1, S4 = 2.4 dS m -1 and S5 = 3.0 dS m -1) and 4 replications. The irrigation was accomplished according to soil water retention curve and resistance block reading, restoring the soil water content to its field capacity. It was verified that water salinity affected the plants characteristics significantly. The water salinity above 1.2 dS m -1 caused damage to plant development resulting, in some cases, in death of plants. The leaf area of plant was the variable most affected by salinity of irrigation water. By the end of the experiment, the soil was classified as saline-sodic.
Resumo:
The need for a rational use of water and supply of food for a growing world population have led to the development of research in the area of irrigation systems. Thus, some irrigation systems which join efficiency with low cost of material have been developed. Although some technical characteristics are provided by the manufacturers, tests are required to verify functioning of the system and uniformity of water distribution. Continuous research on uniformity, characteristics of the materials and design of water distribution systems is essential for system improvement. Therefore, the objective of this work was to evaluate the CV (manufacturer's coefficient of variation) of Amanco microsprinkler (1.0 mm light green nipple) using bench testing in the laboratory of Irrigation at UNESP - FCA campus of Botucatu-SP. Twenty-five microsprinklers in a sequential design were used in the tests. Three flow systems were tested as follows: a Coil system based on serial connected pipes; a Lateral system, the most common system in which secondary lines are fed by a main line; and a Mesh system used in the urban water supply. The results showed that 4.17% CVf met the production standards and the Lateral and Mesh systems were similar regarding outflow using bench testing. The Mesh system presented the highest mean value of outflow and the lowest range of variation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In order to calculate the daily stress degree of a bean crop submitted to four water regime applications, cover crop and air daily measurements temperatures were accomplished by using a hand-held infrared thermometer. The treatments did not present crop water stress except the control (without irrigation). The highest yield was obtained by the treatment that received less irrigation frequency, and among the treatments that had the same number of irrigation. The largest yield was obtained with the one that received larger amount of applied water. The largest irrigation frequency did not result in larger productivity. The methodologies used for the irrigation planning were efficient for the replacement of soil water. The daily stress degree index was effective in determining crop water stress; and it was reliable presenting negative values in good water soil condition.
Resumo:
The irrigation scheduling is basically the adoption of pre-established criteria to define the time and the amount of water to be applied through irrigation systems. Hence, the objective of this work was to develop and test a spreadsheet of easy comprehension, handling and interpretation by growers, which uses as inputs the physical-hydric soil attributes and tensiometer readings to the determination of irrigation depth and time. The spreadsheet enables the grower to make reading and to know in a fast way how much water to apply into the soil. The test of the spreadsheet was performed in an irrigated orchard of grapevines in Petrolina, State of Pernambuco, Brazil. Soil water retention curves and tensiometer readings from the effective rooting depth were used as a basis for obtaining the soil water matric potential, soil water content, water availability, soil water content to be replaced, net and gross irrigation depth and irrigation time. The analysis of the use of the irrigation scheduling spreadsheet resulted in a shorter time for irrigation in relation to the irrigation scheduling based only on the crop evapotranspiration. The spreadsheet can be helpful to growers adjust irrigation depth when irrigation scheduling is based only on crop evapotranspiration.
Resumo:
The Irrigameter is aevapotranspiration measuring device used in irrigation management to optimize water. However, its use requires a prior adjustment to weather conditions where it will be used. The objective of this study was identify the corresponding height of water level inside the evaporimeterIrrigameter that estimate reference evapotranspiration in climate of the plateau of Vitoria da Conquista - BA, in different seasons. The experiment was a completely randomized design with five treatments and three replications. For each treatment was determined an average coefficient for the Irrigameter called K I, calculated as the ratio of estimated evapotranspiration in Irrigameter (ET I) and reference evapotranspiration (ET 0). The ET 0 was obtained by the Penman-Monteith - FAO 56. The results showed that the coefficients of Irrigameter increased exponentially with increasing water level inside the evaporimeter, and the equipment must be operated with the water level equal to 5.2 cm for better estimation of ET 0. The remaining heights observed in different seasons showed no significant difference when compared to annual average used as a reference in this study.
Resumo:
The experiment was developed based on the importance of the nutritional factor cunhã for large and small, animals and on the growth of this forage in typical soils of the semiarid region, generally with salinity from natural or anthropogenic action. The experiment was performed in vessels with a capacity of 5kg prepared in a protected environment with full sunshine in the Department of Technology and Social Sciences (DTCS) of UNEB Campus III in Juazeiro - BA. It evaluated the effect of seven different salt concentrations on increasing levels of irrigation water electrical conductivity - ECw (0, 2, 4, 6, 8, 10 and 12 dS/m), at room temperature. The analysis of culture were taken every seven days observing the number of leaves, stem diameter, plant, plant length and total chlorophyll content at 13; 20; 27; 34 and 40 days after the start of irrigation with saline. The contents of proline, the ratio aero part/Root (AP/Rt), the root length and water content were evaluated in the 40 th day after the onset of treatment. The results showed that the elevation of ECw affected all variables.
Resumo:
The experiment was conducted in a greenhouse from May 1 to July 31, 2008, in Areia county, Paraiba State, PB, Brazil, in order to evaluate the effects of irrigation water salinity on initial growth of the passionfruit seedlings in non-saline substrate with and without bovine biofertilizer. The treatments were distributed in a completely randomized design, with three replications and twelve plants per plots, in a factorial arrangement 5 × 2 × 2, corresponding the former to the levels of salinity in the irrigation water: 0.5; 1.0; 2.0; 3.0 and 4.0 dS m-1, in soils with and without bovine biofertilizer applied at two moments (25 and 65 days after seedling emergence). The growth of the seedlings and the soil electrical conductivity were evaluated at the end of the experiment. The biofertilizer was diluted in a low saline water at a 1:1 ratio and was applied once two days before sowing, corresponding to 10% of the substrates volume. The increase in water salinity inhibited the growth in height of plants, leaf area and root length, but always to a lesser extent in the treatments with bovine biofertilizer. The increase in electrical conductivity of the irrigation water elevated the soil salinity, independently of the addition of biofertilizer.
Resumo:
The objective of this study was to evaluate the effect of organic fertilizers (urban solid waste and swine manure) as a source of nutrients and residue from bauxite processing as a corrective of soil acidity, in area cultivated with sugar cane irrigated with potable water and served in the availability of phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) levels in the soil and plants. For this experiment was carried out in pots, using a Alfisol, assessing the availability of the elements in the 0-20 cm layer and the concentration of these nutrients in the leaves of sugarcane. The data showed that the residues increased the concentrations of Ca and Mg in soil, as the concentration of K was not changed and S was not detected, due to the low concentration in the soil. In the leave +1 of sugarcane the residue of bauxite increased levels of N, P, K, Ca and Mg (15.68, 1.73, 10.43, 3.50 and 1.08 g kg-1, respectively). The application of urban solid waste and swine manure also increased the levels of N, K and Ca (11.56, 9.18 and 2.81 g kg-1, respectively). The quality of irrigation water did not alter the availability of P, K, Ca, Mg and S in the soil as well as the levels of these macronutrients in the plant.
Resumo:
The use of irrigation systems that consume lower water and energy in agriculture is important to supply the growing global demand for food. In this way, it's important to develop techniques that will increase the uniformity of water application on drip irrigation systems. The aim of the work was to compare the provision of lateral lines in drip irrigation, through the formation of wet bulbs in soil and physical parameters of radish, composed of single spacing between drippers in relation to lateral lines composed of two segments, each one composed by different spacing between emitters. Two distributions of evaluation were carried out: 1) conventional drip lateral lines with 20 cm emitter spacing were compared to proposed drip lines, with 24 emitter spacing in the initial section and 20 cm emitter spacing in the final section; 2) conventional drip lateral lines with 30 cm emitter spacing were compared to proposed drip lines, with 36 emitter spacing in the initial section and 30 cm emitter spacing in the final section. The experiment was carried out in a greenhouse of the Sao Manuel Experimental Farm, located at Sao Manuel, SP. The experimental design was entirely randomized, with six treatments and four replications. Results showed no difference among treatments for the most of the evaluated variables. So it is possible to conclude that the use of different spacing between emitters in the same lateral line can be used to increase the line length.
Resumo:
The objective of this work was to analyze the most appropriate management to achieve higher productivity for carioca beans (phaseolus vulgaris) and pearll cultivar. The research was developed in the Demonstrative and Experimental Area of Irrigation (ADEI) of FCAV/UNESP, Campus of Jaboticabal, SP. Four treatments were used: T1- irrigation with base in ETo estimated by the method of Class A pan; T2- irrigations based on the readings of tensiometers installed at 0,20 m and 0,40 m of depth; T3- irrigations carried out with base in ETo estimated by the method of Penman-Monteith and T4- witness. The results were submitted to analysis of variance. To compare the averages the test Turkey was used at 5% of probability. The treatment T3 had smaller applied water depth than the treatments T1 and T2, and also smaller productivity. The conclusion is that the treatments irrigated with larger frequency showed higher production of grains.
Resumo:
Common Bean (Phaseolus vulgaris L.) is widespread in the social and economic scene in Brazil, as well it is Brazilian population main dish, and it also helps small and medium farmers' income. The objective of this study was to compare the productivity performance of common bean Carioca - IAC Alvorada with irrigation suppression in each of the five phenological phases. The experiment was conducted in plots in a greenhouse at College of Agronomical Sciences, São Paulo State University (UNESP), Botucatu - SP. The hypothesis is that if the water supply is suppressed in one of the five development stages of irrigated common beans, the yield reduction would be at least 20%. The treatments consisted of suppression irrigation in one of the five development stages (stage V1 to V3, stage V4 to early flowering, flowering stage, pod formation stage and pod filling stage) compared with the irrigation at all stages and suppression of irrigation at all stages, with seven treatments and four replications. The treatments most affected by water suppression were those which suffered suppression of irrigation during the vegetative phase and flowering stage. Treatments with water suppression in all stages, and suppression during the phases (stage V1 to V3, stage V4 to early flowering, flowering stage, pod formation stage and pod filling stage) showed yield reduction of approximately 95%, 55.1%, 49.5%, 63,1%, 30.2% and 35.6%, respectively, when compared to treatment with irrigation all stages. All treatments considered confirmed the hypothesis.