108 resultados para Bis(oxazoline) ligands
Resumo:
H-1-N-15 2D NMR data for S-allyl-L-cysteine (deoxyalliin) and for bis(S-allyl-L-cysteinate)palladium(II) complex are presented in this manuscript. Large upfield N-15 NMR shift of the amine nitrogen in the spectrum of the complex when compared to the spectrum of the ligand shows clearly coordination of S-allyl-L-cysteine, in the anion form, to palladium(II) through the NH2 group. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
C28H20N4Pd2S2, monoclinic, P12(1)/c1 (No. 14), a = 11.325(1) Angstrom, b = 13.530(1) Angstrom, c = 17.925(1) Angstrom, beta = 106.23(1)degrees, V = 2637.1 Angstrom(3), Z = 4, R-gt(F) = 0.052, wR(ref)(F-2) = 0.129, T = 293 K.
Resumo:
The cyanate-bridged cyclopalladated compound [Pd(C(2),N-dmba)(mu-NCO)](2) (dmba=N,N-dimethylbenzylamine) reacts in acetone with pyrazole (pz), 3,5-dimethylpyrazole (dmpz), imidazole (imz) and 2-methylimidazole (mimz) to give [Pd(2)(C(2),N-dmba)(2)(mu-NCO)(mu-pz)] (1), [Pd(2)(C(2),N-dmba)(2)(mu-NCO)(mu-dmpz)] (2), [Pd(C(2),N-dmba)(NCO)(imz)] (3) and [Pd(C(2),N-dmba)(NCO)(mimz)] (4), respectively. The compounds were characterized by elemental analysis, IR spectroscopy and TG. The thermal decomposition of the compounds occurs in three consecutive steps and the final decomposition products were identified as Pd(0) by X-ray powder diffraction. The thermal stability order of the complexes is 2 > 3 > 1 > 4.
Resumo:
The electrochemical oxidation of some p-substituted benzylic derivatives of Co(III) dimethylglyoximato and Co(III)bis(salicylaldehydc)o-phenylenediimine in dimethylformamide. 0.2 M in tetraethyammonium perchlorate, on a platinum electrode, at several temperatures, is described as an ECE type, the first electrochemical step being a quasi-reversible one-electron charge transfer at room temperature. At temperatures around -20°C, or lower, the influence of the irreversible chemical decomposition of the oxidized species, via a solvent or other nucleophilic-assisted reaction, is negligible. It is suggested that at low temperatures the oxidation to the formally CoIV-R species is followed by an isomerization reaction in which this complex is partially transformed in a CoIII-(R) species or a s π-complex which undergoes an electroreduction at less positive potentials than those corresponding to the reduction of the CoIV-R species. © 1982.
Resumo:
The bis (thiocyanatemercury)tetracarbonyliron, [Fe(CO)4(HgSCN)2], was prepared from [Fe(CO) 5] and Hg(SCN)2, and studied by IR spectroscopy and X-ray diffraction. The compound crystallizes in the tetragonal space group I4,1/a. The unit cell, with dimensions of a = 13.778(3), c = 13.234(3) Å, V = 2512.3(9) Å3, contains four molecules. The iron atom is octahedrally coordinated by four carbonyl groups and two mercury atoms in cis positions. The coordination of the mercury atoms is distorted square-planar, since, besides mercury-iron and mercury-sulphur bonds, there are also mercury-mercury and mercury-nitrogen interactions. The FeHg distance is 2.506(5)Å and the HgFeHg angle is 78.0(1)°. © 1987.
Resumo:
The 1:1 mixed-ligand [{Cu(N3)2(diEten)}2] (diEten=N,N-diethylethylenediamine) complex has been synthesized and characterized by i.r. spectroscopy and X-ray diffraction. The compound crystallizes in the triclinic space group P1. Its structure consists of a centrosymmetric Cu2N2 unit whose N atoms belong to end-on azido bridges. Each copper atom is also surrounded by three nitrogen atoms; two from one N, N-diethylethylenediamine, and one from the remaining azide. The five nitrogen atoms altogether occupy the vertices of a slightly distorted trigonal bipyramid, and the azidobridges produced a rather short Cu...Cu distance of 3.37 Å. © 1989 Chapman and Hall Ltd.
Resumo:
The compound di-μ-cyanato-bis[{cyanato(N,N-dimethylethylenediamine)} copper(II)] was synthesized, and studied by IR spectroscopy and X-ray diffraction. It is dimeric with bridging and terminal cyanate groups, and the copper atoms show a square-based pyramid coordination geometry. © 1990.
Resumo:
The bis(1,10-phenanthrolinethiocyanatemercury)tetracarbonyliron was prepared from bis(thiocyanatemercury)tetracarbonyliron and 1,10-phenanthroline and crystallized from hot acetone solution as [Fe(CO)4(HgSCN)2(phen)2]·C3H6O, which was subjected to a full IR and X-ray crystallographic characterization. The iron atom is octahedrally coordinated by four carbonyl groups and two mercury atoms in cis positions. The coordination geometry of the mercury atoms is a distorted square-based pyramid since each one is coordinated to one iron, one sulphur, one mercury and two nitrogen atoms. The FeHg distances are 2.549(3) and 2.564(3) Å, and the HgFeHg angle is 78.01(9)°. © 1992.
Resumo:
The compound (3,5-dinitrobenzoate)bis(triphenylphosphine)copper(I) was synthesized and studied by IR spectroscopy and X-ray diffraction techniques. It is monomeric with the carboxylato acting as a monodentate ligand. The copper atom shows a trigonal planar coordination geometry. © 1993.
Resumo:
Tetrahedral nickel(0) complexes [NiL4], [Ni(dppe)2] and [Ni(CO)2(SbPh3)2] (L=AsPh3, SbPh3, P(OPh)3, dppe=1,2-bis(diphenylphosphino)ethane) were prepared by reduction of NiCl2·6H2O with NaBH4 under N2 or CO atmosphere in the presence of the ligand. The complex [Ni(SbPh3)4] was also obtained by electrolysis at -1.3 V (Ag/Ag+), under a platinum gauze, of the system NiCl2·6H2O/SbPh3 (molar ratio=1:4). These complexes, both in the solid state and in solution, show an orange emission at room temperature, when excited with UV radiation. A qualitative molecular orbital diagram for the [NiL4] complexes is proposed. Electronic absorption spectra of the complexes show bands near 400 nm assigned as MLCT π*2e←d2t2. A 1A1←3T1 transition is suggested for the emission observed in these systems. Lifetimes in microsecond range were estimated from time-resolved emission spectra. Spectroscopic properties of the free ligands have also been investigated.
Resumo:
The pyH[trans-RuCl4(py)2](1) and pyH[trans-RuCl4(CO)(py)](2) complexes were synthesized and found to crystallize in space group P21/n, Z = 4 with a = 8.080(7), b = 22.503(7), c = 10.125(6) Å, β = 93.19(6)° for (1) and a = 7.821(1), b = 10.337(3), c = 19.763(3) Å, β = 93.07(1)° for (2). The structures were solved by Patterson and difference Fourier techniques and refined to R = 0.062 for (1) and R = 0.038 for (2). In both cases the Ru(III) ion is octahedrally coordinated to four co-planar chlorine atoms, the nitrogen of the pyridine rings or carbon from the carbon monoxide. Another protonated pyridine group, which forms the counter-cation completes the crystal structures. The UV-Vis absorption spectra show three bands: (1) 360 (ε = 1180 M-1 cm-1), 441 (ε = 3200 M-1 cm-1) and 532 nm (ε = 400 M-1 cm-1); (2) 315(ε = 1150 M-1 cm-1), 442 (ε = 3170 M-1 cm-1) and 530 nm (ε = 390 M-1 cm-1). The two higher energy bands were associated with ligand-to-metal charge transfer transitions and a third band at lower energy was assigned to a d-d transition. Low temperature EPR data confirmed the presence of the paramagnetically active Ru(III) and it is consistent with axial symmetry of the complexes. The position of the stretching CO band in complex (2) is discussed in terms of metal-CO backbonding.
Resumo:
The fac-[RuCl3(NO)(dppm)] (1) and cis-[RuCl2(dppm)2] (2) complexes were obtained with co-crystallization in the solid state from the reaction of RuCl3(NO) with the diphosphine in dichloromethane. mer-[RuCl3(NO)(dppb)] (3) was obtained from [RuCl3(dppb)(H2O)] by bubbling NO for 30 min in the same solvent. The crystal and molecular structures of these three compounds have been determined from X-ray studies. © Elsevier Science Ltd.
Resumo:
The freshwater planktonic alga Kirchneriella aperta was grown in batch cultures to stationary growth phase. Copper and lead complexation properties of the exudate from stationary and exponential growth phases were determined by titrations monitored by ion-selective electrodes. Molecular weight fractionation dialysis) and analysis of the titration data (Scatchard Plot) revealed that K. aperta releases metal-complexing ligands. Copper is associated with low and high molecular weight compounds, whereas lead forms complexes with only high molecular weight compounds. Gas-liquid chromatography showed that mannose and rhamnose make up 74% of the total high molecular weight organic material, with uronic acids present at 19%.
Resumo:
We determined the effects of losartan and CGP42112A (selective ligands of the AT1 and AT2 angiotensin receptors, respectively) and salarasin (a relatively nonselective angiotensin receptor antagonist) on urinary volume and urinary sodium and potassium excretion induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of conscious rats. Both the AT1 and AT2 ligands and salarasin administered in the presence of ANG II elicited a concentration-dependent inhibition of urine excretion, but losartan inhibited only 75% of this response. The IC50 for salarasin, CGP42112A, and losartan was 0.01, 0.05, and 6 nM, respectively. Previous treatment with saralasin, CGP42112A and losartan competitively antagonized the natriuretic responses to PVN administration of ANG II, and the IC50 values were 0.09, 0.48, and 10 nM, respectively. The maximum response to losartan was 65% of that obtained with saralasin. Pretreatment with saralasin, losartan, and CGP42112A injected into the PVN caused shifts to the right of the concentration-response curves, but the losartan concentrations were disproportionately greater compared with salarasin or CGP42112A. The IC50 values were 0.06, 0.5, and 7.0 for salarasin, CGP42112A, and losartan, respectively. These results suggest that both AT1 and AT2 receptor subtypes in the PVN are involved in ANG II-related urine, sodium, and potassium excretion, and that the inhibitory responses to AT2 blockade are predominant. Copyright (C) 1999 Elsevier Science B.V.
Resumo:
Despite vast efforts and expenditures in the past few decades, malaria continues to kill millions of persons every year, and new approaches for disease control are urgently needed. To complete its life cycle in the mosquito, Plasmodium, the causative agent of malaria, has to traverse the epithelia of the midgut and salivary glands. Although strong circumstantial evidence indicates that parasite interactions with the two organs are specific, hardly any information is available about the interacting molecules. By use of a phage display library, we identified a 12-aa peptide-salivary gland and midgut peptide 1 (SM1)-that binds to the distal lobes of the salivary gland and to the luminal side of the midgut epithelium, but not to the midgut surface facing the hemolymph or to ovaries. The coincidence of the tissues with which parasites and the SM1 peptide interact suggested that the parasite and peptide recognize the same surface ligand. In support of this hypothesis, the SM1 peptide strongly inhibited Plasmodium invasion of salivary gland and midgut epithelia. These experiments suggest a new strategy for the genetic manipulation of mosquito vectorial capacity.