110 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer
Resumo:
This gaper demonstrates that artificial neural networks can be used effectively for estimation of parameters related to study of atmospheric conditions to high voltage substations design. Specifically, the neural networks are used to compute the variation of electrical field intensity and critical disruptive voltage in substations taking into account several atmospheric factors, such as pressure, temperature, humidity, so on. Examples of simulation of tests are presented to validate the proposed approach. The results that were obtained by experimental evidences and numerical simulations allowed the verification of the influence of the atmospheric conditions on design of substations concerning lightning.
Design and analysis of an efficient neural network model for solving nonlinear optimization problems
Resumo:
This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.
Resumo:
The accurate identification of the nitrogen content in crop plants is extremely important since it involves economic aspects and environmental impacts. Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification involves a lot of nonlinear parametes and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought spectral reflectance of plant leaves using artificial neural networks. The network acts as identifier of relationships among pH of soil, fertilizer treatment, spectral reflectance and nitrogen content in the plants. So, nitrogen content can be estimated and generalized from an input parameter set. This approach can be form the basis for development of an accurate real time nitrogen applicator.
Resumo:
Induction motors are largely used in several industry sectors. The selection of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this article is to use artificial neural networks for torque estimation with the purpose of best selecting the induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since proposed approach estimates the torque behavior from the transient to the steady state, one of its main contributions is the potential to also be implemented in control schemes for real-time applications. Simulation results are also presented to validate the proposed approach.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically>30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, two sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with an experimental example, an investigation on a massive quarter scale model of a steel bridge section, in order to verify the performance of this proposed methodology.
Resumo:
This work studies the capability of generalization of Neural Network using vibration based measurement data aiming at operating condition and health monitoring of mechanical systems. The procedure uses the backpropagation algorithm to classify the input patters of a system with different stiffness ratios. It has been investigated a large set of input data, containing various stiffness ratios as well as a reduced set containing only the extreme ones in order to study generalizing capability of the network. This allows to definition of Neural Networks capable to use a reduced set of data during the training phase. Once it is successfully trained, it could identify intermediate failure condition. Several conditions and intensities of damages have been studied by using numerical data. The Neural Network demonstrated a good capacity of generalization for all case. Finally, the proposal was tested with experimental data.
Resumo:
Purpose - The purpose of this paper is to provide information on lubricant contamination by biodiesel using vibration and neural network.Design/methodology/approach - The possible contamination of lubricants is verified by analyzing the vibration and neural network of a bench test under determinated conditions.Findings - Results have shown that classical signal analysis methods could not reveal any correlation between the signal and the presence of contamination, or contamination grade. on other hand, the use of probabilistic neural network (PNN) was very successful in the identification and classification of contamination and its grade.Research limitations/implications - This study was done for some specific kinds of biodiesel. Other types of biodiesel could be analyzed.Practical implications Contamination information is presented in the vibration signal, even if it is not evident by classical vibration analysis. In addition, the use of PNN gives a relatively simple and easy-to-use detection tool with good confidence. The training process is fast, and allows implementation of an adaptive training algorithm.Originality/value - This research could be extended to an internal combustion engine in order to verify a possible contamination by biodiesel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mobile robots need autonomy to fulfill their tasks. Such autonomy is related whith their capacity to explorer and to recognize their navigation environments. In this context, the present work considers techniques for the classification and extraction of features from images, using artificial neural networks. This images are used in the mapping and localization system of LACE (Automation and Evolutive Computing Laboratory) mobile robot. In this direction, the robot uses a sensorial system composed by ultrasound sensors and a catadioptric vision system equipped with a camera and a conical mirror. The mapping system is composed of three modules; two of them will be presented in this paper: the classifier and the characterizer modules. Results of these modules simulations are presented in this paper.
Resumo:
Feed-forward neural networks (FFNNs) were used to predict the skeletal type of molecules belonging to six classes of terpenoids. A database that contains the (13)C NMR spectra of about 5000 compounds was used to train the FFNNs. An efficient representation of the spectra was designed and the constitution of the best FFNN input vector format resorted from an heuristic approach. The latter was derived from general considerations on terpenoid structures. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. Neural networks and wavenets have been recently seen as attractive tools for developing efficient solutions for many real world problems in function approximation. In this paper, it is shown how feedforward neural networks can be built using a different type of activation function referred to as the PPS-wavelet. An algorithm is presented to generate a family of PPS-wavelets that can be used to efficiently construct feedforward networks for function approximation.
Resumo:
In most of the cases, the systems of water distribution from groundwater wells use electrical submersible pumps. All electrical energy is applied to the pumps; however, other components (pipes, valves, etc.) of these systems are also responsible by the higher or lower consumption of electric energy. The supervisors and operators of the systems should thus have knowledge of the global energetic behavior of the process in order to administrate it properly. This work suggests a 'Global Energetic Efficiency Indicator' for groundwater wells by using mathematical equations and neural networks. Simulation results will be presented in order to demonstrate the validity of the proposed approach.
Resumo:
This paper describes the application of artificial neural nets as an alternative and efficient method for the classification of botanical taxa based on chemical data (chemosystematics). A total of 28,000 botanical occurrences of chemical compounds isolated from the Asteraceae family were chosen from the literature, and grouped by chemical class for each species. Four tests were carried out to differentiate and classify different botanical taxa. The qualifying capacity of the artificial neural nets was dichotomically tested at different hierarchical levels of the family, such as subfamilies and groups of Heliantheae subtribes. Furthermore, two specific subtribes of the Heliantheae and two genera of one of these subtribes were also tested. In general, the artificial neural net gave rise to good results, with multiple-correlation values R > 0.90. Hence, it was possible to differentiate the dichotomic character of the botanical taxa studied.
Resumo:
The induction motors are largely used in several industry sectors. The dimensioning of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this paper is to use artificial neural networks as tool for dimensioning of induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Simulation results are also presented to validate the proposed approach.