580 resultados para Acrylic dentures
Resumo:
Objectives:Microleakage is a pre-stage of debonding between hard chairside relines and denture base acrylic resins. Therefore, it is important to assess them with regard to the longevity of the relined denture. This study investigated the effect of thermal cycling on the microleakage at the interface of three hard chairside reline resins and three denture base resins.Material and methods:Rectangular bars (12 mm x 3 mm x 3 mm) of Lucitone 550, Acron MC and QC 20 were made and relined with Kooliner, Tokuyama Rebase Fast II and Ufi Gel Hard, Lucitone 550, Acron MC and QC 20 resins. Specimens were divided into one control and two test groups (n = 10). In specimens of the control group, the microleakage was performed after the reline procedure. In Test Group 1, the specimens were stored for 24 h in distilled water at room temperature and in Test Group 2; the specimens were thermal cycled from 5 to 55 degrees C for 5000 cycles with a 30-s dwell time. Subsequently, all specimens were immersed in 50% silver nitrate solutions for 24 h. All specimens were sectioned longitudinally into three fractions and the lateral sections were examined (n = 20). Silver nitrate stain penetration was examined under a stereoscopic lens with x30 magnification, and the images were captured. Leica Qwin image analysis software was used to determine microleakage at the interface of the materials. Data were analysed using the Kruskal-Wallis test at a 95% level of significance.Results:For all cycles, there were no statistically significant differences between thermal cycled and non-thermal cycled groups (p > 0.05).Conclusion:It can be concluded that thermal cycling had no effect on the microleakage.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Microwave disinfection of complete dentures has been recommended to treat denture stomatitis in non-immune compromised patients. Oral candidiasis is a frequent manifestation of HIV infection. The objective of this study is to evaluate the effectiveness of microwave irradiation on the disinfection of complete dentures inoculated with American Type Culture Collection (ATCC) and HIV isolates of five species of Candida. Fifty dentures were made, sterilised and inoculated with the tested microorganisms (C. albicans, C. dubliniensis, C. krusei, C. glabrata and C. tropicalis). After incubation (37 degrees C/48 h), dentures were microwaved (650 W/3 min). Non-irradiated dentures were used as positive controls. Replicate aliquots of suspensions were plated at dilutions 10(-1) to 10(-4) and incubated (37 degrees C/48 h). Colony counts (cfu ml(-1)) were quantified. Dentures were also incubated at 37 degrees C for 7 days. Data were analysed with 2-way anova and Tukey HSD tests (alpha = 0.05). Dentures contaminated with all Candida species showed sterilisation after microwave irradiation. All control dentures showed microbial growth on the plates. The cfu ml(-1) for C. glabrata was higher than those of C. albicans, C. dubliniensis and C. tropicalis whereas the cfu ml(-1) for C. krusei was lower. The cfu ml(-1) for clinical isolates was higher than those of ATCC yeast. Microwave irradiation for 3 min at 650 W resulted in sterilisation of all complete dentures.
Resumo:
Denture fractures are common in daily practice, causing inconvenience to the patient and to the dentists. Denture repairs should have adequate strength, dimensional stability and color match, and should be easily and quickly performed as well as relatively inexpensive. Objective: The aim of this study was to evaluate the flexural strength of acrylic resin repairs processed by different methods: warm water-bath, microwave energy, and chemical polymerization. Material and methods: Sixty rectangular specimens (31x10x2.5 mm) were made with warm water-bath acrylic resin (Lucitone 550) and grouped (15 specimens per group) according to the resin type used to make repair procedure: 1) specimens of warm water-bath resin (Lucitone 550) without repair (control group); 2) specimens of warm water-bath resin repaired with warm water-bath; 3) specimens of warm water-bath resin repaired with microwave resin (Acron MC); 4) specimens of warm water-bath resin repaired with autopolymerized acrylic resin (Simplex). Flexural strength was measured with the three-point bending in a universal testing machine (MTS 810 Material Test System) with load cell of 100 kgf under constant speed of 5 mm/min. Data were analyzed statistically by Kruskal-Wallis test (p<0.05). Results: The control group showed the best result (156.04 +/- 1.82 MPa). Significant differences were found among repaired specimens and the results were decreasing as follows: group 3 (43.02 +/- 2.25 MPa), group 2 (36.21 +/- 1.20 MPa) and group 4 (6.74 +/- 0.85 MPa). Conclusion: All repaired specimens demonstrated lower flexural strength than the control group. Repairs with autopolymerized acrylic resin showed the lowest flexural strength.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To evaluate the effect of microwave disinfection on the flexural strength and Vickers hardness of 4 autopolymerized resins (Kooliner [K], Tokuso Rebase Fast [T], Ufi Gel Hard [U], and New Truliner [N]) and 1 denture base resin (Lucitone 550 [L]). Method and Materials: For each material, 48 specimens (64 x 10 x 3.3 mm) were made and divided into 6 equal groups (n = 8). In the control group, specimens were untreated. Before testing, specimens were immersed in 200 mL of distilled water and submitted to disinfection for 1 of the following irradiation times: 1, 2, 3, 4, or 5 minutes. The irradiation procedure was performed twice. The flexural strength was determined using a testing machine MTS-810 and measurements of Vickers hardness were made on Micromet 2100. The values were submitted to ANOVA and Tukey's test (P = .05). Results: The K material showed a significant increase (P = .0010) in flexural strength following 5 minutes of disinfection compared to control specimens. The flexural strength mean values of materials T, U, and N were not significantly affected (P > .05) by disinfection. Compared to the control group, the K material showed a significant increase in hardness (P < .001) following disinfection for 3, 4, and 5 minutes. For material U, disinfection for 4 and 5 minutes produced specimens with significantly increased hardness values (P < .001) compared to the control group. For material N, disinfection for 5 minutes resulted in significantly higher hardness values (P < .001) than the control group. Conclusion: Regardless of the irradiation time, the flexural strength and hardness of the materials evaluated were not detrimentally affected by microwave disinfection. (Quintessence Int 2008;39:833-840)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. The aim of this study was to evaluate the cytotoxic effect of the monomers isobutyl methacrylate (IBMA) and 1,6-hexanediol dimethacrylate (1,6-HDMA), the plasticizer di-n-butyl phthalate (DBP), and the degradation by-products methacrylic acid (MA) and benzoic acid (BA) on L929 cells. Based on previous investigations on the release of these compounds from hard chairside reline resins, a range of concentrations (mu mol/L) were selected for the cytotoxicity tests (IBMA, 5.491406.57; 1,6-HDMA, 1.2239.32; DBP, 1.12143.8; MA, 9.07581; BA, 3.19409).Methods. Cytotoxic effects were assessed using MTT and 3H-thymidine assays after the cells had been exposed to the test compounds at the given concentrations for 24h. Cytotoxicity was rated based on cell viability relative to controls (cells exposed to medium without test substances).Results. DNA synthesis activity was inhibited by all compounds. Mitochondrial dehydrogenase activity decreased in cells treated with monomers, plasticizer and MA by-product, whereas no cytotoxic effect was observed on contact with BA at the majority of concentrations tested. The ranges of suppression for 3H-thymidine assay were: IBMA, 2595%; 1,6-HDMA, 9598%; DBP, 4098%; MA, 9799%; BA, 5471%. For MTT assay, the ranges of suppression were: IBMA, 096%; 1,6-HDMA, 2689%; DBP, 1780%; MA, 5266%; BA, 027%. The 3H-thymidine assay was more sensitive than the MTT assay.Significance. This study evaluated the cytotoxicity of a wide range of concentrations of monomers (IBMA and 1,6-HDMA), plasticizer (DBP) and degradation by-products (MA and BA), including those expected to be released from hard chairside reline resins. The differences observed in the cytotoxicity of these compounds, along with other properties, may assist the dental practitioners in the selection of reline materials with improved service life performance and low risk of adverse reactions in patients who wear relined dentures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)