236 resultados para volumetric bone mineral density


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o objetivo de estabelecer os valores normais da densidade mineral óssea (DMO) em milímetros de alumínio (mmAl) de eqüinos da raça Brasileiro de Hipismo (BH), foi radiografado o osso acessório do carpo de animais desta raça e aplicada a técnica da densitometria óptica em imagem radiográfica (DOR). Foram utilizados animais de 20 a 30 meses de idade, sendo 12 machos e 12 fêmeas. A DMO média foi de 4,7 ± 0,1mmAl para os machos e de 4,6 ± 0,1mmAl para as fêmeas, não sendo significativa a diferença entre estes valores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the importance of daily free activity in the cage and body weight gain during the recovering of bone structural and mechanical properties in growing rats after hindlimb unloading. Eight-week-old male Wistar rats were randomly divided into control (CG, n=24) and suspended (SG, n=24) groups. Animals from SG underwent a four-week hindlimb unloading period by tail-suspension. Animals from CG and those from SG after release were kept in collective cages and sacrificed at the age of 12, 16 and 20 weeks. Both femurs were removed and its area, bone mineral density (BMD), resistance to failure and stiffness were determined. Four-week hindlimb unloading decreased (p < 0.05) body weight (CG, 373.00 +/- 9.47 vs. SG, 295.86 +/- 9.19 g), BMD (CG, 0.19 +/- 0.01 vs. SG, 0.15 +/- 0.01 g/cm(2)), bone resistance to failure (CG, 147.75 +/- 5.05 vs. SG, 96.40 +/- 5.95 N) and stiffness (CG, 0.38 +/- 0.01 vs. SG, 0.23 +/- 0.02 N/m). Eight weeks of free activity in cage recovered (p > 0.05) the body weight (CG, 472.75 +/- 14.11 vs. SG, 444.75 +/- 18.91 g), BMD (CG, 0.24 +/- 0.01 vs. SG, 0.22 +/- 0.01 g/cm(2)), bone resistance to failure (CG, 195.73 +/- 10.06 vs. SG, 178.45 +/- 8.48 N) and stiffness (CG, 0.56 +/- 0.02 vs. SG, 0.47 +/- 0.03 N/m) of SG animals. Body weight correlated strongly with bone structural and mechanical properties (p < 0.0001). In conclusion, free activity in the cage associated with body weight gain restored bone structural and mechanical properties in growing rats after hindlimb unloading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim To evaluate the soft tissue and the dimensional changes of the alveolar bony crest at sites where deproteinized bovine bone mineral (DBBM) particles, concomitantly with the placement of a collagen membrane, were used at implants installed into sockets immediately after tooth extraction. Material and methods The pulp tissue of the mesial roots of 3P3 was removed in six Labrador dogs, and the root canals were filled. Flaps were elevated bilaterally, the premolars hemi-sectioned, and the distal roots removed. Recipient sites were prepared in the distal alveolus, and implants were placed. At the test sites, DBBM particles were placed in the residual marginal defects concomitantly with the placement of a collagen membrane. No treatment augmentation was performed at the control sites. A non-submerged healing was allowed. Impressions were obtained at baseline and at the time of sacrifice performed 4 months after surgery. The cast models obtained were analyzed using an optical system to evaluate dimensional variations. Block sections of the implant sites were obtained for histological processing and soft tissue assessments. Results After 4 months of healing, no differences in soft tissue dimensions were found between the test and control sites based on the histological assessments. The location of the soft tissue at the buccal aspect was, however, more coronal at the test compared with the control sites (1.8 +/- 0.8 and 0.9 +/- 0.8 mm, respectively). At the three-dimensional evaluation, the margin of the soft tissues at the buccal aspect appeared to be located more apically and lingually. The vertical dislocation was 1 +/- 0.6 and 2.7 +/- 0.5 mm at the test and control sites, respectively. The area of the buccal shrinkage of the alveolar crest was significantly smaller at the test sites (5.9 +/- 2.4 mm2) compared with the control sites (11.5 +/- 1.7 mm2). Conclusion The use of DBBM particles concomitantly with the application of a collagen membrane used at implants placed into sockets immediately after tooth extraction contributed to the preservation of the alveolar process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To evaluate the influence of deproteinized bovine bone mineral (DBBM) particles concomitant with the placement of a collagen membrane on alveolar ridge preservation and on osseointegration of implants placed into alveolar sockets immediately after tooth extraction. Material and methods: The pulp tissue of the mesial roots of 3P3 was removed in six Labrador dogs and the root canals were filled. Flaps were elevated in the right side of the mandible, and the buccal and lingual alveolar bony plates were exposed. The third premolar was hemi-sectioned and the distal root was removed. A recipient site was prepared and an implant was placed lingually. After implant installation, defects of about 0.6mm wide and 3.1mm depth resulted at the buccal aspects of the implant, both at the test and at the control sites. The same surgical procedures and measurements were performed on the left side of the mandible. However, DBBM particles with a size of 0.25-1mm were placed into the remaining defect concomitant with the placement of a collagen membrane. Results: All implants were integrated into mature bone. No residual DBBM particles were detected at the test sites after 4 months of healing. Both the test and the control sites showed buccal alveolar bone resorption, 1.8 +/- 1.1 and 2.1 +/- 1mm, respectively. The most coronal bone-to-implant contact at the buccal aspect was 2 +/- 1.1 an 2.8 +/- 1.3mm, at the test and the control sites, respectively. This difference in the distance was statistically significant. Conclusion: The application of DBBM concomitant with a collagen membrane to fill the marginal defects around implants placed into the alveolus immediately after tooth extraction contributed to improved bone regeneration in the defects. However, with regard to buccal bony crest preservation, a limited contribution of DBBM particles was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To verify the behavior of the mineral bone content and density in male adolescents according to age and secondary sexual characters. Methods: 47 healthy adolescents between 10 and 19 years old were assessed according to weight, height, body mass index, puberty stage, calcium intake, bone mineral density and content in the lumbar spine and in the proximal femur. The bone mass was measured through bone densitometries. The intake of calcium was calculated through a 3-day diet. The BMI (body mass index) was calculated with the Quetelet Index and the puberty stage was defined according to Tanner's criteria. The analysis used descriptive statistics such as average and standard deviation, and variance estimates to compare the different age groups. Moreover, the Tukey test was used to determine the significant differences. Results: It was evident that the calcium intake in the different ages assessed has not reached the minimum value of 800 mg. The bone mineral density and content showed an increase after the age of 14, as well as when the teenagers reached the sexual maturation stage G4. The mineralization parameters showed a high level when the teenagers were in the G3 stage, however, without statistical significance. Conclusion: The results indicate an important level of bone mineralization during adolescence. Maturation levels superior to G3 have shown more mineralization. This study proves that the critical years for bone mass gain start after the 14-15 years old or older. Copyright © 2004 by Sociedade Brasileira de Pediatria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Puberty is the fundamental period for bone mass (BM) acquisition. In this period mineralization is found to increase with levels of high bone formation. The critical years of intense bone anabolism deserve special attention, as adequate gain could minimize fracture risk in later years. The objective of this work was to study bone mineral content (BMC) and bone mineral density (BMD) in male adolescents with age bracket and maturation level. Sixty-one healthy male 10 to 19 year-olds were evaluated for calcium intake, weight, stature, BMI, puberty stage and BMC and BMD in the lumbar spine and femur. BM was measured by bone densitometry (DXA). Calcium intake was calculated by recording 3 days diet. Puberty stage was defined as per Tanner. Descriptive statistics was used with means and standard deviations, linear correlation, and analysis of variance for comparison between age groups, and the Tukey test (p<0.05). Linear correlation was positive and indicated body weight as the main correlation variable with BMD in both studied locations (p<0.01). BMC and BMD increased with age, differences were significant from 14 to 15 years, and when adolescents reached Tanner stage G4. These results showed a pronounced increase in bone mineralization, with the years after 14 to 15 being critical for BM acquisition in Brazilian adolescents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Bone strength is influenced by a number of different determinants, such as mass, size, geometry and also by the intrinsic material properties of the tissue. Aims: The structure and mechanical properties of the femur were analyzed in aged (14 mo-old) animals submitted to hindlimb unloading (HU) for 21 days. Methods: Twenty Wistar rats were randomly divided into Control and HU groups and the femur was submitted to dual X ray absorptiometry (DXA), DIGORA radiographic density, mechanical compression testing and Knoop microhardness analyse in cortical and cancellous bone. Results: Femurs from HU group presented significantly lower failure load, decreased bone mineral density (BMD)/bone mineral content (BMC) in whole bone; proximal/distal epiphysis and middiaphyseal cortical bone measured by DXA were similar in the two groups; radiographic density from areas in proximal epiphysis was significantly lower in HU group, and microhardness measured at periosteal and endosteal levels were also signifcantly diminished in HU compared with Control group. Conclusion: Disuse induced damage in the trabecular femoral bone architecture with decisive effect on the head and trochanteric fossa, which became weaker. Bone diaphyseal cortical hardness also suffered effect of unloading, probably related to osteocyte/osteoblast activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The porpoise of this study was to evaluate the effects of extracorporeal shock waves in third metacarpus bone from healthy horses by determination of bone elasticity. It were used 20 Thoroughbred horses, male and female, with two years old, on top of training and selected as the state healthy. At the beginning of the experiment (D0), all animals were submitted for evaluation of bone elasticity held in the third metacarpus bone. The animals were divided into two groups (Control Group - CG and Experimental Group - EG). The application of extracorporeal shock wave therapy (ESWT) was performed on the right forelimb of the animals in the experimental group in the same place evaluated for bone elasticity and was used apparatus for extracorporeal therapy of waves with 0.15 mJ/mm2 energy flux density and 2000 pulses with E6R20 probe, with focus feature of the shock wave of 20 mm. The ESWT were repeated every 21 days, a total of three sessions (D0, D21 and D42). The analysis of bone elasticity determination was realized at D21, D42 and D72. The average of speed ultrasound differed between groups at D21, D42 and D72, and the animals from EG had lower bone mineral density after applications of ESWT. There was also difference in the analysis of bone mass (Z-Score) between the groups at D21 and D42, which animals from EG showed a significant decrease in bone mass. The risk of fracture was higher in animals from experimental group at D21. It was concluded that ESWT is able to promote change in bone mineral density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Excessive consumption of sugar-sweetened beverage is positively related to overweight. Despite the epidemic of childhood obesity, body mass can have a positive or negative effect on bone health. Material and methods: Wistar rats 8 weeks olds were randomly assigned to consume water (Control group, n = 10), sucrose 30% (HS group, n = 10) and water + sucrose 30% (WHS group, n = 14) for 8 weeks. All animals received standard laboratory chow ad libitum. Femur measurements included microhardness, bone mineral density (BMD) by DXA, mechanical compression test and microcomputed tomography (microCT) analysis. Results: We observed significant difference in final body weight in HS and WHS groups, significant increase in triacylglycerol/fructosamine in HS and WHS groups, significantly high BMD in WHS group, increased periosteal/endosteal cortical microhardness in WHS group. Compared with control, microCT parameters evidenced lower amount of connected trabecular bone, decreased bone volume, lower trabecular number with high trabecular separation in distal epiphysis in WHS animals. Conclusion: High-sucrose consumption causes obesity induced by a liquid diet with negative effects on cancellous bone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The suspension of rats by the tail model is used to investigate the behavior of bone in animals unable to move around. Bone is an adaptative tissue that develops in structure and function, among other factors, in response to mechanical forces applied to it and metabolic demands that it will suffer. The absence of mechanical forces and deformation of bone that occurs causes a decrease in calcium deposition in the absence of stimuli on osteoblasts and osteocytes, favoring the action of osteoclasts, making bones weak and brittle. Therefore, the mechanical action is necessary to stimulate local bone response and thus provide growth and remodeling. The aim of this study was to evaluable by radiographic densitometry, the tail suspension for 15 and 36 days alter the bone mineral density of cervical vertebrae (C3), thoracic (T6) and lumbar (L1 and L3) of Wistar rats. Thirty Rattus norvegicus albinus, adult, male, Wistar strain, average body mass ± 350g, were divided into 3 groups: control (n = 10) - not suspended; S15 (n = 10) - suspended for 15 days and S36 (n = 10) - suspended for 36 days. For densitometric analysis vertebrae were radiographed, scanned, digitized and analyzed by the computer program ImageJ®. There was a statistically significant increase in bone mineral density in group S15, probably by the restlessness of the animals to the suspension, with a decrease in group S36, and this hypothetically is linked to the accommodation of the rats, concluding that the tail suspension altered bone mineral density in first time with a decrease over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To evaluate the influence on osseointegration of Deproteinized bovine bone mineral (DBBM) particles used to fill defects of at least 1 mm around implants having no primary contact with bone. Material and methods: Premolars and first molars were extracted bilaterally from the mandible of six Labrador dogs. After 3 months of healing, mucoperiosteal full-thickness flaps were elevated, and one recipient site was prepared in the molar region of each hemi-mandible to place implants. These were installed with a deliberate circumferential and periapical space to the bone walls of 1.2 mm. All implants were stabilized with passive fixation plates to maintain the implants in situ and without any contact with the implant bed. The control sites were left to be filled with coagulum, while at the test sites, the residual gap was filled with DBBM. After 3 months of submerged healing, the animals were sacrificed. Ground sections were prepared and analyzed histomorphometrically. Results: Mineralized bone-to-implant contact was 4.0% and 3.9% for control and test sites, respectively. The width of the residual defects was 0.48 mm and 0.88 mm at the control and test sites, respectively. The percentage of implant surface covered by a layer of dense connective tissue of 0.12 mm of width on average was 84.9% and 88.5% at the control and test sites, respectively. Conclusion: A minor and not predictable degree of contact or distance osteogenesis was obtained on the implant surface when primary contact of the implant surface with the implant bed had deliberately been avoided. DBBM grafting of the artificial gap did not favor osseointegration. Neither did it enhance the ability to bridge the gap with newly formed bone in an artificial defect wider than 1 mm. © 2013 John Wiley & Sons A/S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity and osteoporosis are important global health problems characterized by increasing prevalence with high impact on morbidity and mortality. The objective of this review was to determine whether excess weight during adolescence interferes with bone mass accumulation. If bone mineral gain can be optimized during puberty, adults are less likely to suffer from the devastating complications of osteoporosis. The increased fracture risk in obese children has also been attributed to a lower bone mass for weight compared to non-obese children. Thus, adiposity present in this age group may not result in the protection of bone mass, in contrast to what has been observed in adults. However, studies involving adolescents have reported both protective and detrimental effects of obesity on bone. The results and mechanisms of these interactions are controversial and have not been fully elucidated, a fact highlighting the extreme relevance of this topic and the need to monitor intervening and interactive variables. © 2013 by the authors; licensee MDPI, Basel, Switzerland.