100 resultados para tumor necrosis factor related apoptosis inducing ligand receptor
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Leprosy is a complex infectious disease influenced by genetic and environmental factors. The genetic contributing factors are considered heterogeneous and several genes have been consistently associated with susceptibility like PARK2, tumor necrosis factor (TNF), lymphotoxin-alpha (LTA) and vitamin-D receptor (VDR). Here, we combined a case-control study (374 patients and 380 controls), with meta-analysis (5 studies; 2702 individuals) and biological study to test the epidemiological and physiological relevance of the interleukin-10 (IL-10) genetic markers in leprosy. We observed that the -819T allele is associated with leprosy susceptibility either in the case-control or in the meta-analysis studies. Haplotypes combining promoter single-nucleotide polymorphisms also implicated a haplotype carrying the -819T allele in leprosy susceptibility (odds ratio (OR) = 1.40; P = 0.01). Finally, we tested IL-10 production in peripheral blood mononuclear cells stimulated with Mycobacterium leprae antigens and found that -819T carriers produced lower levels of IL-10 when compared with noncarriers. Taken together, these data suggest that low levels of IL-10 during the disease outcome can drive patients to a chronic and unprotective response that culminates with leprosy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-alpha expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Rutin is a flavonoid with antioxidant, vasodilatory, anti-inflammatory and immune-stimulating activities. To study the toxicity of rutin and its protective effect, this work investigated the cytotoxic, apoptosis-inducing, genotoxic and protective effects of rutin in HTC cells. In the MTT assay, the highest concentration tested (810 mu M) showed cytotoxicity after 72 h of treatment, where cell viability and cell proliferation was diminished. None of the concentrations of rutin tested induced apoptosis after 24 h treatment. The highest concentration of rutin after 24 h treatment induced DNA damage, shown in the comet assay, but did have a genotoxic effect in the micronucleus test. Rutin was tested against the pro-carcinogenic agent benzo(a)pyrene, at concentrations of 90, 270 and 810 mu M, and was found to reduce induced DNA damage significantly. This protective effect of rutin against a pro-carcinogen, suggests an important biological activity for this compound, which can contribute to human health through the diet. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Acting in the hypothalamus, tumor necrosis factor-alpha (TNF-alpha) produces a potent anorexigenic effect. However, the molecular mechanisms involved in this phenomenon are poorly characterized. In this study, we investigate the capacity of TNF-alpha to activate signal transduction in the hypothalamus through elements of the pathways employed by the anorexigenic hormones insulin and leptin. High dose TNF-a promotes a reduction of 25% in 12 h food intake, which is an inhibitory effect that is marginally inferior to that produced by insulin and leptin. In addition, high dose TNF-a increases body temperature and respiratory quotient, effects not reproduced by insulin or leptin. TNF-alpha, predominantly at the high dose, is also capable of activating canonical pro-inflammatory signal transduction in the hypothalamus, inducing JNK, p38, and NF kappa B, which results in the transcription of early responsive genes and expression of proteins of the SOCS family. Also, TNF-a activates signal transduction through JAK-2 and STAT-3, but does not activate signal transduction. through early and intermediary elements of the insulin/leptin signaling pathways such as IRS-2, Akt, ERK and FOXO1. When co-injected with insulin or leptin, TNF-a, at both high and low doses, partially impairs signal transduction through IRS-2, Akt, ERK and FOXO1 but not through JAK-2 and STAT-3. This effect is accompanied by the partial inhibition of the anorexigenic effects of insulin and leptin, when the low, but not the high dose of TNF-alpha is employed. In conclusion, TNF-alpha, on a dose-dependent way, modulates insulin and leptin signaling and action in the hypothalamus. (c) Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A obesidade é atualmente um problema de saúde pública que provoca sérias conseqüências sociais, físicas e psicológicas. A etiologia da obesidade não é de fácil identificação, uma vez que a mesma é caracterizada como doença multifatorial de complexa interação entre fatores comportamentais, culturais, genéticos, fisiológicos e psicológicos. Recentes avanços na área de endocrinologia e metabolismo mostram que, diferentemente do que se acreditava há alguns anos, o adipócito sintetiza e libera diversas substâncias, não sendo apenas uma célula armazenadora de energia. Entre as substâncias liberadas pelo adipócito incluem-se a adiponectina, o fator de necrose tumoral-alfa, a interleucina-6 e a leptina. Especificamente, a leptina desempenha importante papel no controle da ingestão alimentar e no controle do peso corporal em mamíferos. Além disso, o hormônio ghrelina, recentemente descoberto, também parece influenciar o metabolismo energético e a obesidade. As alterações que o exercício físico provoca na fisiologia endócrino-metabólica podem contribuir sobremaneira para a prática clínica. Assim, essa revisão abordará os conhecimentos mais recentes sobre a leptina, a ghrelina e o papel dos diferentes tipos de exercício físico sobre estes hormônios. Os trabalhos mostram que a relação entre o exercício físico e a concentração plasmática desses peptídeos ainda não está clara. As razões para isso poderiam ser devidas aos diferentes protocolos de treinamento físico empregados nos estudos. Além disso, diferenças genéticas também podem explicar as discrepâncias entre os resultados obtidos em seres humanos, pois a existência de polimorfismo em alguns genes pode acarretar respostas celulares diferentes frente ao exercício físico.
Resumo:
Chloroquine, due to its basic properties, has been shown to prevent the release of iron from holotransferrin, thereby interfering with normal iron metabolism in a variety of cell types. We have studied the effects of chloroquine on the evolution of experimental paracoccidioidomycosis by evaluating the viable fungal recovery from lung, liver and spleen from infected mice and H2O2, NO production, tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-6, IL-10 levels and transferrin receptor (TfR) expression from uninfected and infected peritoneal macrophages. Chloroquine caused a significant decrease in the viable fungal recovery from all organs tested, during all periods of evaluation. Peritoneal macrophages from chloroquine-treated infected mice showed higher H2O2 production and TfR expression, and decreased levels of NO, endogenous and stimulated-TNF-alpha, IL-6 and IL-10 during the three evaluated periods. However, despite its suppressor effects on the macrophage function, the chloroquine therapeutic effect upon murine paracoccidioidomycosis was probably due to its effect on iron metabolism, blocking iron uptake by cells, and consequently restricting iron to fungus growth and survival.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)