112 resultados para tin dioxide films


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tin dioxide (SnO2) thin films doped with Eu3+, are deposited by the sol-gel-dip-coating process on top of GaAs films, which is deposited by resistive evaporation on glass substrate. This heterojunction assembly presents luminescence from the rare-earth ion, unlike the SnO2 deposition directly on a glass substrate, where emissions from the Eu3+ transitions are absent. The Eu3+ transitions are clearly identified and are similar to the observation on SnO2 pressed powder (pellets), thermally treated at much higher temperatures. However, in the form of heterojunction films, the Eu emission comes along a broad band, located at higher energy compared to Eu3+ transitions, which is blue-shifted as the thermal annealing temperature increases. The size of nanocrystallites points toward quantum confinement or electron transfer between oxygen vacancies, originated from the disorder in the material, and trivalent rare-earth ions, which present acceptor-like character in this matrix. This electron transfer may relax for higher temperatures in the case of pellets, and the broad band is eliminated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

TiO2/SnO2 thin films heterostructures were grown by the sol-gel dip-coating technique. It was found that the crystalline structure of TiO2 depends on the annealing temperature and the substrate type. TiO2 films deposited on glass substrate, submitted to thermal annealing until 550 degrees C, present anatase structure, whereas films deposited on quartz substrate transform to rutile structure when thermally annealed at 1100 degrees C. When structured as rutile, this oxide semiconductor has very close lattice parameters to those of SnO2, making easier the heterostructure assembling. The electrical properties of TiO2/SnO2 heterostructure were evaluated as function of temperature and excitation with different light sources. The temperature dependence of conductivity is dominated by a deep level with energy coincident with the second ionization level of oxygen vacancies in SnO2, suggesting the dominant role of the most external layer material (SnO2) to the electrical transport properties. The fourth harmonic of a Nd:YAG laser line (4.65 eV) seems to excite the most external layer whereas a InGaN LED (2.75 eV) seems to excite electrons from the ground state of a quantized interfacial channel as well as intrabandgap states of the TiO2 layer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tin dioxide varistors doped with Coo, ZnO, Ta2O5 and Cr2O3 were prepared by the mixed oxide method. Temperature dependent impedance spectroscopy revealed two different activation energies, one at low frequencies and the other at high frequencies. These activation energies were associated with the adsorption and reaction of O-2 species at the grain boundary interface. We show that Cr2O3 improves the varistor properties, generating sites for the adsorption of O' and O at the grain boundary region. The O' and O defects are truly responsible for the barrier formation at the grain boundary interface. (c) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Usually, the kinetic models used in the study of sintered ceramic are performed by means of indirect physical tests, such as, results obtained from data of linear shrinkage and mass loss. This fact is justified by the difficulty in the determinations of intrinsic parameters of ceramic materials along every sintering process. In this way, the technique of atomic force microscopy (AFM) was used in order to determine the importance and the evolution of the dihedral angle in the sintering of 0.5 mol% MnO2-doped tin dioxide obtained by the polymeric precursor method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Er3+ emission in the wide bandgap matrix SnO2 is observed either through a direct Er ion excitation process as well as by an indirect process, through energy transfer in samples codoped with Yb3+ ions. Electron-hole generation in the tin dioxide matrix is also used to promote rare-earth ion excitation. Photoluminescence spectra as function of temperature indicate a slight decrease in the emission intensity with temperature increase, yielding low activation energy, about 3.8meV, since the emission even at room temperature is rather considerable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of Cr2O3 on the properties of (Zn, Co, Ta)-doped SnO2 varistors were investigated in this study. The samples with different Cr2O3 concentrations were sintered at 1400 degrees C for 2 h. The properties of (Zn, Co, Ta, Cr)-doped SnO2 varistors were evaluated by XRD. dilatornetry, SEM, I-V and impedance spectroscopy. DC electrical characterization showed a dramatic increase ill the breakdown electrical field and in the nonlinear coefficient with the increase in Cr2O3 concentration. The grain size was found to decrease from 13 to 5 mu m with increasing the Cr2O3 content. The impedance data, represented by means of Nyquist diagrams, show two time constants, one at low frequencies and the other at high frequencies. (c) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.