274 resultados para thermal analysis
Resumo:
The Brazilian sugarcane industry shows a great amount of generated sludge which should be utilized adequately. Two sludge samples, aerobic and anaerobic, were collected. Both were evaluated by thermogravimetry and differential thermal analysis (DTA) as well as X-ray power diffraction. These compounds show variations of mass between 30 and 140 A degrees C due to the dehydration stage. The DTA curves show that the compounds have an exothermic reaction between 450 and 550 A degrees C, which indicates that this can be used as an energy source. Details concerning the kinetic parameters of the dehydration and thermal decomposition have also been described here. The kinetic study of these stages was evaluated in open crucibles under nitrogen atmosphere. The obtained data were evaluated with the isoconversional kinetic method. The results show that different activation energies were obtained for thermal decomposition.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The thermal behavior of Cu-Al alloys with 17, 19 and 21 at.%Al was examined by differential thermal analysis (DTA), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). The presence of the gamma phase (Al4Cu9) was clearly detected for the Cu-19 at.%Al alloy and caused the alpha (2) phase disordering process in two stages. The tendency to increase the alpha (2) dissolution precipitates with the increase in the Al content seems to be reverted for compositions at about 21 at.%Al and the heating/cooling ratio seems to influence the thermal response of this process. The presence of the endothermic peak corresponding to the beta (1)--> beta transformation depends on an incomplete beta decomposition reaction. The variation of the heating rate showed that the beta (1)-->(alpha+gamma (1)) decomposition is the dominant reaction for alloys containing 19 and 21 at.%Al.
Resumo:
The effect of 4 mass% Ag addition on the thermal behavior of the Cu-9 mass% Al alloy was studied using differential scanning calorimetry (DSC), optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results showed that the presence of silver causes (Cu)-alpha+(alpha+gamma1)-->(Cu)-alpha+beta transformation to occur in two stages. In the first one, part of the produced beta phase combines with the precipitated Ag to give a silver-rich phase and in the second one the transformation is completed. The formation of this silver-rich phase seems to be enhanced at very low cooling rates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The jeriva is a well-known fruit, which belongs to the Arecaceae family, Syagrus romanzoffiana species frequently found in Brazil. Extraction of the jeriva oil was carried out, and the fatty acid profile of this oil indicates the linoleic and oleic acid presence, around 29.35 and 28.89%, respectively. Thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) were used to characterize this oil. Additionally, this oil was evaluated by DSC from 25 to -80 A degrees C, and the crystallization behavior was verified. Details concerning the thermal behavior as well as data of kinetic parameters of these stages have been described here. The obtained data were evaluated, and the values were plotted in activation energy (E (a)/kJ mol(-1)) in function of the conversion degree (alpha).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Meglumine, (2R,3R,4R,5S)-6-methylaminohexane-1,2,3,4,5-pentol, is a carbohydrate derived from sorbitol in which the hydroxyl group in position one is replaced by a methylamine group. It forms binary adducts with substances having carboxyl groups, which have in common the presence of hydrogen bonding as the main force in the stabilization of these species. During melting, adducts of meglumine with flunixin (2-[[2-methyl-3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid) polymerize or self-assemble in amorphous supramolecular structures with molecular weights around 2.0 x 10(5) kDa. DSC curves, in a first heating, show isomorphic transitions where the last one at 137 A degrees C for the flunixin-meglumine adduct originated the supramolecular amorphous polymers with glass transition around 49.5 A degrees C. The kinetic parameters for the thermal decomposition step of the polymers were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and heating rates of 5, 10, 15, and 20 A degrees C min(-1), the E (alpha) and B (alpha) terms could be determined and, consequently, the pre-exponential factor, A(alpha), as well as the kinetic model, g(alpha).
Resumo:
The number of the cities with canalized water and sewage treatment stations has increased lately and consequently having in mind the great concern on environment preservation and the quality of the water used by society. However, these stations are nowadays causing another kind of problem: a huge quantity of sludge as residue. Due to the implication of the residue on the environment and, consequently, to human life quality, performing of an accurate investigation about the components of such sludge, as well as the thermal stability of this residue in the environment become necessary. This paper presents a study on sludge from water and sewage treatment station, as well as the thermal characterization of residue. Such study was performed through FTIR, atomic absorption, thermoanalytical (TG/DTG, DTA) techniques, that made it possible to observe that the main components of the sludge are clay, carbonates and organic substance, presenting a low rate of metals and a unique thermal behavior since the sludge from the treatment station has a higher thermal stability.
Resumo:
The Al and In-diclofenac compounds were prepared. Thermogravimetry (TG) and X-ray diffraction powder patterns were used to characterize these compounds. Details concerning the dehydration and thermal decomposition as well as data of kinetic parameters have been described here. The kinetic studies of these stages were evaluated from several heating rates with mass sample of 2 and 5 mg in open crucibles under nitrogen atmosphere. The results of the present study improve the knowledge on these compounds including their dehydration and thermal stability. The obtained data leads to a dependence on the sample mass, which results in two kinetic behavior patterns.
Resumo:
Poly(3-hydroxybutyrate), PHB, has been structurally modified with maleic anhydride, MA, in the presence of triethylamine, TEA. Glass transition, melting, and crystallization temperature, obtained from DSC curves, and thermal degradation temperatures obtained from TG ones, were employed to evaluate the influence of the MA proportion on the modification in the PHB chain. According to the results, most of chain modification reactions are the 80/20 and 90/10 proportions. Observations suggest that most chain modification reactions occur when the ratio of PHB/MA is 80/20 or 90/10. This suggests that modifications of PHB in the presence of MA involve main chain scission.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cellulose can be obtained from innumerable sources such as cotton, trees, sugar cane bagasse, wood, bacteria, and others. The bacterial cellulose (BC) produced by the Gram-negative acetic-acid bacterium Acetobacter xylinum has several unique properties. This BC is produced as highly hydrated membranes free of lignin and hemicelluloses and has a higher molecular weight and higher crystallinity. Here, the thermal behavior of BC, was compared with those of microcrystalline (MMC) and vegetal cellulose (VC). The kinetic parameters for the thermal decomposition step of the celluloses were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and at heating rates of 5, 10, and 20 A degrees C/min, the E(alpha) and B(alpha) terms could be determined and consequently the pre-exponential factor A(alpha) as well as the kinetic model g(alpha). The pyrolysis of celluloses followed kinetic model g(alpha) = [-ln(1 - alpha)](1.63) on average, characteristic for Avrami-Erofeev with only small differences in activation energy. The fractional value of n may be related to diffusion-controlled growth, or may arise from the distributions of sizes or shapes of the reactant particles.