62 resultados para sulfur amino acids
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Unlike the muscle protein, alpha-tropomyosin expressed in Escherichia coli does not bind actin, does not exhibit head-to-tail polymerization, and does not inhibit actomyosin ATPase activity in the absence of troponin. The only chemical difference between recombinant and muscle tropomyosins is that the first methionine is not acetylated in the recombinant protein (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). We expressed three fusion tropomyosins in E. coli with 2, 3, and 17 amino acids fused to its amino terminus. Ah three fusions restored actin binding, head-to-tail polymerization, and the capacity to inhibit the actomyosin ATPase to these unacetylated tropomyosins. Unlike larger fusions, the small fusions of 2 and 3 amino acids do not interfere with regulatory function. Therefore the presence of a fused dipeptide at the amino terminus of unacetylated tropomyosin is sufficient to replace the function of the N-acetyl group present in muscle tropomyosin. A structural interpretation for the function of the acetyl group, based on our results and the coiled coil structure of tropomyosin, is presented.
Resumo:
The major globulin fraction from lentil seeds was investigated with respect td in vitro hydrolysis by trypsin and chymotrypsin. Globulin was isolated by a NaCl-ascorbate extraction procedure and purified by DEAE-cellulose chromatography and gelfiltration chromatography on Sepharose CL-6B. The purity and identification of the protein were performed by PAGE. The native globulin, with a molecular weight of 375 kD, was resolved by SDS-PAGE into twelve polypeptides with molecular weights ranging from 61 to 14.5 kD. Native and heated globulin GI was hydrolyzed with trypsin and chymotrypsin. SDS-PAGE indicated that native globulin was more resistant to digestion than heated protein. Amino acid analysis of the major globulin revealed that glutamic acid was present in the largest concentration, followed by aspartic acid, arginine and leucine. As is also the case for other legumin-like globulins, lentil GI was deficient in sulfur-containing amino acids.
Resumo:
This study was undertaken in a closed system with Nile tilapia (Oreochromis niloticus) to examine the effects of total replacement of fish meal (FM) by soybean meal. Nile tilapia fingerlings with an average weight of 5.34+/-0.08 g were hand-fed one of the five isoenergetic (approximate to13.5 MJ digestible energy kg(-1)) and isoproteic (approximate to31% of digestible protein) experimental diets to satiation, six times a day during 85 days in eight replicate fibreglass tanks (six fish per tank). The control diet containing FM was substituted by soybean meal, with and without essential amino acids (lysine, methionine and threonine) or dicalcium phosphate supplementation. The supplemental amino acids were added at levels to simulate the reference amino acid profile of Nile tilapia carcass protein, based on the ideal protein concept. The results showed that soybean meal diet supplemented only with dicalcium phosphate was inferior to the control diet with FM and soybean meal diets supplemented with dicalcium phosphate and essential amino acids. Multiple essential amino acids and dicalcium phosphate incorporation in soybean meal diets was associated with performance, whole-body composition and carcass yield equal to that of the fish fed with the control diet containing FM. These data suggest that a diet with all plant protein source, supplemented with essential amino acids, based on tissue amino acid profile, can totally replace FM in a diet for Nile tilapia, without adverse effects on the growth performance, carcass yield and composition.
Resumo:
The eukaryotic translation initiation factor 5A (eIF5A) is the only protein that contains hypusine [N-epsilon-(4-amino-2-hydroxybutyl)lysine], which is required for its activity. Hypusine is formed by post-translational modification of one specific lysine (Lys50 for human eIF5A) by deoxyhypusine synthase and deoxyhypusine hydroxylase. To investigate the features of eIF5A required for its activity, we generated 49 mutations in human eIF5A-1, with a single amino acid substitution at the highly conserved residues or with N-terminal or C-terminal truncations, and tested mutant proteins in complementing the growth of a Saccharomyces cerevisiae eIF5A null strain. Growth-supporting activity was abolished in only a few mutant eIF5As (K47D, G49A, K50A, K50D, K50I, K50R, G52A and K55A), with substitutions at or near the hypusine modification site or with truncation of 21 amino acids from either the N-terminus or C-terminus. The inactivity of the Lys50 substitution proteins is obviously due to lack of deoxyhypusine modification. In contrast, K47D and G49A were effective substrates for deoxyhypusine synthase, yet failed to support growth, suggesting critical roles of Lys47 and Gly49 in eIF5A activity, possibly in its interaction with effector(s). By use of a UBHY-R strain harboring genetically engineered unstable eIF5A, we present evidence for the primary function of eIF5A in protein synthesis. When selected eIF5A mutant proteins were tested for their activity in protein synthesis, a close correlation was observed between their ability to enhance protein synthesis and growth, lending further support for a central role of eIF5A in translation.
Resumo:
Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a flipflop phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.
Resumo:
l-Amino acid oxidases (LAAOs) are flavoenzymes that catalytically deaminate l-amino acids to corresponding α-keto acids with the concomitant production of ammonia (NH 3) and hydrogen peroxide (H 2O 2). Particularly, snake venom LAAOs have been attracted much attention due to their diverse clinical and biological effects, interfering on human coagulation factors and being cytotoxic against some pathogenic bacteria and Leishmania ssp. In this work, a new LAAO from Bothrops jararacussu venom (BjsuLAAO) was purified, functionally characterized and its structure determined by X-ray crystallography at 3.1å resolution. BjsuLAAO showed high catalytic specificity for aromatic and aliphatic large side-chain amino acids. Comparative structural analysis with prokaryotic LAAOs, which exhibit low specificity, indicates the importance of the active-site volume in modulating enzyme selectivity. Surprisingly, the flavin adenine dinucleotide (FAD) cofactor was found in a different orientation canonically described for both prokaryotic and eukaryotic LAAOs. In this new conformational state, the adenosyl group is flipped towards the 62-71 loop, being stabilized by several hydrogen-bond interactions, which is equally stable to the classical binding mode. © 2012 Elsevier Inc.
Resumo:
The objective of this study was to develop and evaluate a mathematical model used to estimate the daily amino acid requirements of individual growing-finishing pigs. The model includes empirical and mechanistic model components. The empirical component estimates daily feed intake (DFI), BW, and daily gain (DG) based on individual pig information collected in real time. Based on DFI, BW, and DG estimates, the mechanistic component uses classic factorial equations to estimate the optimal concentration of amino acids that must be offered to each pig to meet its requirements. The model was evaluated with data from a study that investigated the effect of feeding pigs with a 3-phase or daily multiphase system. The DFI and BW values measured in this study were compared with those estimated by the empirical component of the model. The coherence of the values estimated by the mechanistic component was evaluated by analyzing if it followed a normal pattern of requirements. Lastly, the proposed model was evaluated by comparing its estimates with those generated by the existing growth model (InraPorc). The precision of the proposed model and InraPorc in estimating DFI and BW was evaluated through the mean absolute error. The empirical component results indicated that the DFI and BW trajectories of individual pigs fed ad libitum could be predicted 1 d (DFI) or 7 d (BW) ahead with the average mean absolute error of 12.45 and 1.85%, respectively. The average mean absolute error obtained with the InraPorc for the average individual of the population was 14.72% for DFI and 5.38% for BW. Major differences were observed when estimates from InraPorc were compared with individual observations. The proposed model, however, was effective in tracking the change in DFI and BW for each individual pig. The mechanistic model component estimated the optimal standardized ileal digestible Lys to NE ratio with reasonable between animal (average CV = 7%) and overtime (average CV = 14%) variation. Thus, the amino acid requirements estimated by model are animal- and time-dependent and follow, in real time, the individual DFI and BW growth patterns. The proposed model can follow the average feed intake and feed weight trajectory of each individual pig in real time with good accuracy. Based on these trajectories and using classical factorial equations, the model makes it possible to estimate dynamically the AA requirements of each animal, taking into account the intake and growth changes of the animal. © 2012 American Society of Animal Science. All rights reserved.
Resumo:
Amino acids are well known to be an important class of compounds for the maintenance of body homeostasis and their deficit, even for the polar neuroactive aminoacids, can be controlled by supplementation. However, for the amino acid taurine (2-aminoethanesulfonic acid) this is not true. Due its special physicochemical properties, taurine is unable to cross the blood-brain barrier. In addition of injured taurine transport systems under pathological conditions, CNS supplementation of taurine is almost null. Taurine is a potent antioxidant and anti-inflammatory semi-essential amino acid extensively involved in neurological activities, acting as neurotrophic factor, binding to GABA A/glycine receptors and blocking the excitotoxicity glutamate-induced pathway leading to be a neuroprotective effect and neuromodulation. Taurine deficits have been implicated in several CNS diseases, such as Alzheimer's, Parkinson's, epilepsy and in the damage of retinal neurons. This review describes the CNS physiological functions of taurine and the development of new derivatives based on its structure useful in CNS disease treatment.&; 2012 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)