78 resultados para porous zirconium methylphosphonate
Resumo:
The osseointegration of porous titanium implants was evaluated in the present work. Implants were fabricated from ASTM grade 2 titanium by a powder metallurgy method. Part of these implants were submitted to chemical and thermal treatment in order to deposit a biomimetic coating, aiming to evaluate its influence on the osseointegration of the implants. The implants were characterized by Scanning Electron Microscopy (SEM), Electron Dispersive X-Ray Spectroscopy (EDS) and Raman Spectroscopy. Three coated and three control (uncoated) implants were surgically inserted into thirty albino rabbits' left and right tibiae, respectively. Tibiae samples were submitted to histological and histomorphometric analyses, utilizing SEM, optical microscopy and mechanical tests. EDS results indicated calcium (Ca) and phosphorous (P) at the surface and Raman spectra exhibited an intense peak, characteristic of hydroxyapatite (HA). Bone neoformation was detected at the bone-implant interface and inside the pores, including the central ones. The mean bone neoformation percentage in the coated implants was statistically higher at 15 days, compared to 30 and 45 days. The mechanical tests showed that coated implants presented higher resistance to displacement, especially after 30 and 45 days.
Resumo:
This study aimed to develop porous hydroxyapatite scaffold for bone regeneration using the replica of the polymeric sponge technique. Polyurethane sponges were used with varying densities to obtain the scaffolds. The results indicate the porous HA scaffolds developed in this study as potential materials for application as bone substitutes to have high porosity (> 70%), chemical composition, interconnectivity and pore sizes appropriate to the bone regeneration.
Resumo:
This study describes observation of piezoelectric response of Ba(Zr 0.10Ti 0.90.O3 ceramics modified with tungsten (BZT:2W) by the mixed oxide method. According to X ray diffraction analysis, the ceramics are free of secondary phases. Transmission electron microscopy (TEM) analyses reveals the absence of segregates in the grain boundaries indicates the high solubility of WO3 in the BZT matrix. The dielectric permittivity measured at a frequency of 10 KHz was equal to 6500 with dieletric loss of 0.15. A typical hysteresis loop was observed at room temperature. Electron Paramagnetic Resonance (EPR) analyses reveals that substitution of W6+ by Ti4+ causes distortion in the crystal structure changing lattice parameter. Polarization reversal was investigated by applying dc voltage through a conductive tip during the area scanning. Piezoelectric force microscopy images reveals that in-plane response may not change its sign upon polarization switching, while the out-of-plane response does. Copyright © 2010 American Scientific Publishers.
Resumo:
A porous material for bone ingrowth with adequate pore structure and appropriate mechanical properties has long been sought as the ideal bone-implant interface. This study aimed to assess in vivo the influence of three types of porous titanium implant on the new bone ingrowth. The implants were produced by means of a powder metallurgy technique with different porosities and pore sizes: Group 1 = 30% and 180 μm; Group 2 = 30% and 300 μm; and Group 3 = 40% and 180 μm. Six rabbits received one implant of each type in the right and left tibiae and were sacrificed 8 weeks after surgery for histological and histomor-phometric analyses. Histological analysis confirmed new bone in contact with the implant, formed in direction of pores. Histomorphometric evaluation demonstrated that the new bone formation was statistically significantly lower in the group G1 than in group G3, (P = 0.023). Based on these results, increased porosity and pore size were concluded to have a positive effect on the amount of bone ingrowth.
Resumo:
Dielectric spectroscopy was used in this study to examine polycrystalline vanadium and tungstendoped BaZr 0.1Ti 0.90O 3 (BZT10:2V and BZT10:2W) ceramics obtained by the mixed oxide method. According to X-ray diffraction analyses, addition of vanadium and tungsten lead to ceramics free of secondary phases. SEM analyses reveal that both dopants result in slower oxygen ion motion and consequently lower grain growth rate. Temperature dependence dielectric study showed normal ferroelectric to paraelectric transition well above the room temperature for the BZT10 and BZT10:2V ceramics. However, BZT10:2W ceramic showed a relaxor-like behavior near phase transition characterized by the empirical parameter γ. Piezoelectric force microscopy images reveals that the piezoelectric coefficient is strongly influenced by type of donor dopant suggesting promising applications for dynamic random access memories and data-storage media. Copyright © 2010 American Scientific Publishers All rights reserved.
Resumo:
Graphene has been one of the hottest topics in materials science in the last years. Because of its special electronic properties graphene is considered one of the most promising materials for future electronics. However, in its pristine form graphene is a gapless semiconductor, which poses some limitations to its use in some transistor electronics. Many approaches have been tried to create, in a controlled way, a gap in graphene. These approaches have obtained limited successes. Recently, hydrogenated graphene-like structures, the so-called porous graphene, have been synthesized. In this work we show, based on ab initio quantum molecular dynamics calculations, that porous graphene dehydrogenation can lead to a spontaneous formation of a nonzero gap two-dimensional carbon allotrope, called biphenylene carbon (BC). Besides exhibiting an intrinsic nonzero gap value, BC also presents well delocalized frontier orbitals, suggestive of a structure with high electronic mobility. Possible synthetic routes to obtain BC from porous graphene are addressed. © 2012 Materials Research Society.
Resumo:
Background: It has been reported that titanium-zirconium alloy with 13-17% zirconium (TiZr1317) implants show higher biomechanical stability and bone area percentage relative to commercially pure titanium (cpTi) grade 4 fixtures. Purpose: This study aimed to determine whether the higher stability for TiZr1317 implants is associated with higher mechanical properties of remodeling bone in the areas around the implants. Materials and Methods: This study utilized 36 implants (n=18: TiZr1317, n=18: cpTi), which were placed in the healed ridges of the mandibular premolar and first molar of 12 mini pigs (n=3 implants/animal). After 4 weeks in vivo, the samples were retrieved, and resin-embedded histologic sections of approximately 100μm in thickness were prepared. In order to determine the nanomechanical properties, nanoindentation (n=30 tests/specimen) was performed on the bone tissue of the sections under wet conditions with maximum load of 300μN (loading rate: 60μN/s). Results: The mean (±standard deviation) elastic modulus (E) and hardness (H) for the TiZr1317 group were 2.73±0.50GPa and 0.116±0.017GPa, respectively. For the cpTi group, values were 2.68±0.51GPa and 0.110±0.017GPa for E and H, respectively. Although slightly higher mechanical properties values were observed for the TiZr1317 implants relative to the cpTi for both elastic modulus and hardness, these differences were not significant (E=p>0.75; H=p>0.59). Conclusions: The titanium-zirconium alloy used in this study presented similar degrees of nanomechanical properties to that of the cpTi implants. © 2013 Wiley Periodicals, Inc.
Sintering of porous alumina obtained by biotemplate fibers for low thermal conductivity applications
Resumo:
In this research report, a sintering process of porous ceramic materials based on Al2O3 was employed using a method where a cation precursor solution is embedded in an organic fibrous cotton matrix. For porous green bodies, the precursor solution and cotton were annealed at temperatures in the range of 100-1600°C using scanning electron microscopy (SEM) and thermogravimetric (TG) analysis to obtain a porous body formation and disposal process containing organic fibers and precursor solution. In a structure consisting of open pores and interconnected nanometric grains, despite the low porosity of around 40% (calculated geometrically), nitrogen physisorption determined a specific surface area of 14m2/g, which shows much sintering of porous bodies. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analytical methods revealed a predominant amount of α-Al2O3 in the sintered samples. Thermal properties of the sintered Al2O3 fibers were obtained by using the Laser Flash which resulted in the lower thermal conductivity obtained by α-Al2O3 and therefore improved its potential use as an insulating material. © 2012 Elsevier Ltd.
Resumo:
The polyvinyl alcohol (PVA)/barium zirconium titanate Ba[Zr0.1Ti0.9]O3 (BZT) polymer-ceramic composites with different volume percentage are obtained from solution mixing and hot-pressing method. Their structural and electrical properties are characterized by X-ray diffraction (XRD), Rietveld refinement, cluster modeling, scanning electron microscope and dielectric study. XRD patterns of PVA/BZT polymer-ceramics composite (with 50% volume fractions) indicate no obvious differences than the XRD patterns of pure BZT which shows that the crystal structure is still stable in the composite. The scanning electron micrograph indicates that the BZT ceramic is dispersed homogeneously in the polymer matrix without agglomeration. The dielectric permittivity (ε r) and the dielectric loss (tan δ) of the composites increase with the increase of the volume fraction of BZT ceramic. Theoretical models are employed to rationalize the dielectric behavior of the polymer composites. The dielectric properties of the composites display good stability within a wide range of temperature and frequency. The excellent dielectric properties of these polymer-ceramic composites indicate that the BZT/PVA composites can be a candidate for embedded capacitors. © 2013 Elsevier B.V.
Resumo:
This study aimed to evaluate the osteointegration and genotoxic potential of a bioactive scaffold, composed of alumina and coated with hydroxyapatite and bioglass, after their implantation in tibias of rats. For this purpose, Wistar rats underwent surgery to induce a tibial bone defect, which was filled with the bioactive scaffolds. Histology analysis (descriptive and morphometry) of the bone tissue and the single-cell gel assay (comet) in multiple organs (blood, liver, and kidney) were used to reach this aim after a period of 30, 60, 90, and 180 days of material implantation. The main findings showed that the incorporation of hydroxyapatite and bioglass in the alumina scaffolds produced a suitable environment for bone ingrowth in the tibial defects and did not demonstrate any genotoxicity in the organs evaluated in all experimental periods. These results clearly indicate that the bioactive scaffolds used in this study present osteogenic potential and still exhibit local and systemic biocompatibility. These findings are promising once they convey important information about the behavior of this novel biomaterial in biological system and highlight its possible clinical application. © 2013 Wiley Periodicals, Inc.
Resumo:
In the current article, we studied the effect of yttrium [Y3+] ions' substitution on the structure and electric behavior of barium zirconate titanate (BZT) ceramics with a general formula [Ba1-x Y 2x/3](Zr0.25Ti0.75)O3 (BYZT) with [x = 0, 0.025, 0.05] which were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that these ceramics have a single phase with a perovskite-type cubic structure. Rietveld refinement data confirmed [BaO 12], [ZrO6], [TiO6], [YO6] clusters in the cubic lattice. The Y3+ ions' effects on the electric conductivity behavior of BZT ceramics as a function of temperature and frequency are described, which are based on impedance spectroscopy analyses. The complex impedance plots display a double semicircle which highlights the influences of grain and grain boundary on the ceramics. Impedance analyses showed that the resistance decreased with the increasing temperature and resulted in a negative temperature coefficient of the resistance property in all compositions. Modulus plots represent a non-Debye-type dielectric relaxation which is related to the grain and grain boundary as well as temperature-dependent electric relaxation phenomenon and an enhancement in the mobility barrier by Y3+ ions. Moreover, the electric conductivity increases with the replacement of Ba 2+ by Y3+ ions may be due to the rise in oxygen vacancies. © 2013 The Minerals, Metals & Materials Society and ASM International.
Resumo:
Aim: To evaluate the physicochemical and mechanical properties of Portland cement-based experimental sealers (ES) with different radiopacifying agents (zirconium oxide and niobium oxide micro- and nanoparticles) in comparison with the following conventional sealers: AH Plus, MTA Fillapex and Sealapex. Methodology: The materials were tested for setting time, compressive strength, flow, film thickness, radiopacity, solubility, dimensional stability and formaldehyde release. Data were subjected to anova and Tukey tests (P < 0.05). Results: MTA Fillapex had the shortest setting time and lowest compressive strength values (P < 0.05) compared with the other materials. The ES had flow values similar to the conventional materials, but higher film thickness (P < 0.05) and lower radiopacity (P < 0.05). Similarly to AH Plus, the ES were associated with dimensional expansion (P > 0.05) and lower solubility when compared with MTA Fillapex and Sealapex (P < 0.05). None of the endodontic sealers evaluated released formaldehyde after mixing. Conclusion: With the exception of radiopacity, the Portland cement-based experimental endodontic sealers presented physicochemical properties according to the specifications no 57 ANSI/ADA (ADA Professional Product Review, 2008) and ISO 6876 (Dentistry - Root Canal Sealing Materials, 2012, British Standards Institution, London, UK). The sealers had setting times and flow ability that was adequate for clinical use, satisfactory compressive strength and low solubility. Additional studies should be carried out with the purpose of decreasing the film thickness and to determine the ideal ratio of radiopacifying agents in Portland cement-based root canal sealers. © 2013 International Endodontic Journal.
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)