81 resultados para optical pH sensor
Resumo:
Pb2CrO5 nanoparticles were embedded in an amorphous SiO2 matrix by the sol-gel process. The pH and heat treatment effects were evaluated in terms of structural, microstructural and optical properties from Pb2CrO5/SiO2 compounds. X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), and diffuse reflectance techniques were employed. Kubelka-Munk theory was used to calculate diffuse reflectance spectra that were compared to the experimental results. Finally, colorimetric coordinates of the Pb2CrO5/SiO2 compounds were shown and discussed. In general, an acid pH initially dissolves Pb2CrO5 nanoparticles and following heat treatment at 600 A degrees C crystallized into PbCrO4 composition with grain size around 6 nm in SiO2 matrix. No Pb2CrO5 solubilization was observed for basic pH. These nanoparticles were incorporated in silica matrix showing a variety of color ranging from yellow to orange.
Resumo:
Improvement of the operational stability of amperometric sensors based on Prussian Blue (PB) modified glassy carbon electrodes is presented. The long term performance of the sensors was evaluated by injection of hydrogen peroxide (5 μM in potassium buffer) solutions in a flow-injection system during a period of 5-10 h. The following parameters were investigated and correlated with the performance of the sensor: the times for electrodeposition and electrochemical activation, temperature, storage time, pH, composition of the buffer solution and of volume sample injected. These analytical characteristics of the modified electrode can be emphasized: initial sensitivity of 0.3 A cm-2 M-1, detection limit of ca. 0.5 μM, precise results (r.s.d.< 1.5%) and possibility to carry out around 50 samples (50 μL) per hour.
Resumo:
The characteristics, performance, and application of an electrode, namely, Pt|Hg|Hg 2(NAP) 2| Graphite, where NAP stands for naproxenate ion, are described. This electrode responds to NAP with sensivity of (58.1± 0.9) mV decade -1 over the range 5.0 × 10 -5 - 1.0 × 10 -2 mol L -1 at pH 6.0-9.0 and a detection limit of 3.9 × 10 -5 mol L -1. The electrode is easily constructed at a relatively low cost with fast response time (within 10-35 s) and can be used for a period of 6 months without any considerable divergence in potentials. The proposed sensor displayed good selectivity for naproxen in the presence of several substances, especially concerning carboxylate and inorganic anions. It was used for the direct assay of naproxen in commercial tablets by means of the standard additions method. The analytical results obtained by using this electrode are in good agreement with those given by the United States Pharmacopeia procedure. ©2006 Sociedade Brasileira de Química.
Resumo:
The aim of this study was to determine the effect of the exposure of different endodontic materials to different dye solutions by evaluating the optical density of the dye solutions. Seventy-five plastic tubes were filled with one of the following materials: AH Plus, Sealapex, Portland cement, MTA (Angelus and Pro Root) and fifteen control plastic tubes were not. Each specimen of material and control was immersed in a container with 1 ml of each dye solution. A 0.1 ml-dye solution aliquote was removed before immersion and after 12, 24, 48 and 72 hours of each specimen immersion to record its optical density (OD) in a spectrophotometer. Statistical analysis was performed with ANOVA and Tukey tests (5%). No significant difference was found among any of the solution OD values for AH Plus cement. Portland cement promoted different OD values after 12 hours of immersion. MTA-Angelus cement presented different OD values only for 2% rhodamine B and the MTA-Pro Root cement presented different OD values in all 2% rhodamine B samples. Sealapex cement promoted a reduction in the India Ink OD values. Dye evaluation through OD seems to be an interesting method to select the best dye solution to use in a given marginal leakage study.
Resumo:
In this work we demonstrate the use of holographic lithography for generation of large area plasmonic periodic structures. Submicrometric array of holes, with different periods and thickness, were recorded in gold films, in areas of about 1 cm2, with homogeneity similar to that of samples recorded by Focused Ion Beam. In order to check the plasmonic properties, we measured the transmission spectra of the samples. The spectra exhibit the typical surface plasmon resonances (SPR) in the infrared whose position and width present the expected behavior with the period of the array and film thickness. The shift of the peak position with the permittivity of the surrounding medium demonstrates the feasebility of the sample as large area sensors. © 2009 SPIE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The reaction of 2,6-diformylpyridine-bis(benzoylhydrazone) [dfpbbh] and 2,6-diformylpyridine-bis(4-phenylsemicarbazone) [dfpbpsc] with lanthanides salts yielded the new chelates complexes [Eu(dfpbpsc-H +) 2]NO 3 (1), [Dy(fbhmp) 2][Dy(dfpbbh-2H +) 2]·2EtOH·2H 2O (fbhmp = 2-formylbenzoylhydrazone-6-methoxide-pyridine; Ph = phenyl; Py = pyridine; Et = ethyl) and [Er 2(dfpbbh-2H +) 2(μ-NO 3)(H 2O) 2(OH)]·H 2O. X-ray diffraction analysis was employed for the structural characterization of the three chelate complexes. In the case of complex 1, optical, synthetic and computational methods were also exploited for ground state structure determinations and triplet energy level of the ligand and HOMO-LUMO calculations, as well as for a detailed study of its luminescence properties. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
A biomimetic sensor based on a carbon paste electrode modified with the nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine complex was developed as a reliable alternative technique for the sensitive and selective analysis of the herbicide diuron in environmental media. The sensor was evaluated using cyclic voltammetry and amperometric techniques. The best amperometric responses were obtained at 750 mV vs. Ag/AgCl (KClsat), using 0.1 mol L-1 phosphate buffer solution at pH 8.0. Under these conditions, the sensor showed a linear response for diuron concentrations between 9.9 × 10-6 and 1.5 × 10-4 mol L -1, a sensitivity of 22817 (±261) μA L mol-1, and detection and quantification limits of 6.14 × 10-6 and 2 × 10-5 mol L-1, respectively. The presence of the nickel complex in the carbon paste improved selectivity, stability, and sensitivity (which increased 700%), compared to unmodified paste. The applicability of the sensor was demonstrated using enriched environmental samples (river water and soil). © 2012 Elsevier B.V. All rights reserved.
Resumo:
Exploitation of the electronic properties of carbon nanotubes for the development of voltammetric and amperometric sensors to monitor analytes of environmental relevance has increased in recent years. This work reports the development of a biomimetic sensor based on a carbon paste modified with 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin iron (III) chloride (a biomimetic catalyst of the P450 enzyme) and multi-wall carbon nanotubes (MWCNT), for the sensitive and selective detection of the herbicide 2,4- dichlorophenoxyacetic acid (2,4-D). The sensor was evaluated using cyclic voltammetry and amperometry, for electrochemical characterization and quantification purposes, respectively. Amperometric analyses were carried out at -100 mV vs. Ag/AgCl(KClsat), using a 0.1 mol L-1 phosphate buffer solution at pH 6.0 as the support electrolyte. Under these optimized analytical conditions, the sensor showed a linear response between 9.9 × 10-6 and 1.4 × 10-4 mol L-1, a sensitivity of 1.8 × 104 (±429) μA L mol -1, and limits of detection and quantification of 2.1 × 10 -6 and 6.8 × 10-6 mol L-1, respectively. The incorporation of functionalized MWCNT in the carbon paste resulted in a 10-fold increase in the response, compared to that of the biomimetic sensor without MWCNT. In addition, the low applied potential (-100 mV) used to obtain high sensitivity also contributed to the excellent selectivity of the proposed sensor. The viability of the application of this sensor for analysis of soil samples was confirmed by satisfactory recovery values, with a mean of 96% and RSD of 2.1% (n = 3). © 2013 Elsevier B.V.
Resumo:
The preparation and electrochemical characterization of hausmannite-type manganese oxide to use as a sensing material for sodium ion is described. This paper reports a new via synthetic to obtain of the hausmannite-type manganese oxide and its application in the construction of modified electrode as a voltammetric sensor. The electrochemical activity of hausmannite-type manganese oxide is controlled by intercalation/deintercalation of the sodium ions within the oxide lattice. The detection is based on the measurement of anodic current generated by oxidation of MnIII-MnIV at electrode surface. The best electrochemical response was obtained for a sensor composition of 20% (w/w) hausmannite oxide in the paste, a TRIS buffer solution of pH 6.0-7.0 and a scan rate of 50 mV s-1. A sensitive linear voltammetric response for sodium ions was obtained in the concentration range of 2.01 × 10 -5-2.09 × 10-4 mol L-1 with a slope of 355 μA L mmol-1 and a detection limit of 7.50 × 10 -6 mol L-1 using cyclic voltammetry. The use of hausmannite has significantly improved the selectivity of the sensor compared to the birnessite-type manganese oxide modified electrode. Under the working conditions, the proposed method was successfully applied to determination of sodium ions in urine samples. © 2013 Elsevier B.V.
Resumo:
The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L- 1 of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s- 1. A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9 × 10- 5 to 1.0 × 10- 3 mol L- 1, with a detection limit of 6.6 × 10- 5 mol L- 1 using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations. © 2013 Published by Elsevier B.V.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)