86 resultados para one-dimensional hydrogen atom
Resumo:
We consider a one-dimensional cutting stock problem in which the material not used in the cutting patterns, if large enough, is kept for use in the future. Moreover, it is assumed that leftovers should not remain in stock for a long time, hence, such leftovers have priority-in-use compared to standard objects (objects bought by the industry) in stock. A heuristic procedure is proposed for this problem, and its performance is analyzed by solving randomly generated dynamic instances where successive problems are solved in a time horizon. For each period, new demands arise and a new problem is solved on the basis of the information about the stock of the previous periods (remaining standard objects in the stock) and usable leftovers generated during those previous periods. The computational experiments show that the solutions presented by the proposed heuristic are better than the solutions obtained by other heuristics from the literature. © 2012 The Authors. International Transactions in Operational Research © 2012 International Federation of Operational Research Societies.
Resumo:
We introduce a model for the condensate of dipolar atoms or molecules, in which the dipole-dipole interaction (DDI) is periodically modulated in space due to a periodic change of the local orientation of the permanent dipoles, imposed by the corresponding structure of an external field (the necessary field can be created, in particular, by means of magnetic lattices, which are available to the experiment). The system represents a realization of a nonlocal nonlinear lattice, which has a potential to support various spatial modes. By means of numerical methods and variational approximation (VA), we construct bright one-dimensional solitons in this system and study their stability. In most cases, the VA provides good accuracy and correctly predicts the stability by means of the Vakhitov-Kolokolov criterion. It is found that the periodic modulation may destroy some solitons, which exist in the usual setting with unmodulated DDI and can create stable solitons in other cases, not verified in the absence of modulations. Unstable solitons typically transform into persistent localized breathers. The solitons are often mobile, with inelastic collisions between them leading to oscillating localized modes. © 2013 American Physical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
There are several mechanical models to describe the DNA phenomenology. In this work the DNA denaturation is stu- died under thermodynamical and dynamical point of view using the well known Peyrard-Bishop model. The thermody-namics analysis using the transfer integral operator method is briefly reviewed. In particular, the lattice size is discussed and a conjecture about the minimum energy to denaturation is proposed. In terms of the dynamical aspects of the model, the equations of motion for the system are integrated and the results determine the energy density where the denatura- tion occurs. The behavior of the lattice near the phase transition is analyzed. The relation between the thermodynamical and dynamical results is discussed.
Resumo:
The role played by the attainable set of a differential inclusion, in the study of dynamic control systems and fuzzy differential equations, is widely acknowledged. A procedure for estimating the attainable set is rather complicated compared to the numerical methods for differential equations. This article addresses an alternative approach, based on an optimal control tool, to obtain a description of the attainable sets of differential inclusions. In particular, we obtain an exact delineation of the attainable set for a large class of nonlinear differential inclusions.
Resumo:
A time reversal symmetric regularized electron exchange model was used to elastic scattering, target elastic Ps excitations and target inelastic excitation of hydrogen in a five state coupled model. A singlet Ps-H-S-wave resonance at 4.01 eV of width 0.15 eV and a P-wave resonance at 5.08 eV of width 0.004 eV were obtained using this model. The effect on the convergence of the coupled-channel scheme due to the inclusion of the excited Ps and H states was also analyzed.
Resumo:
This paperaims to determine the velocity profile, in transient state, for a parallel incompressible flow known as Couette flow. The Navier-Stokes equations were applied upon this flow. Analytical solutions, based in Fourier series and integral transforms, were obtained for the one-dimensional transient Couette flow, taking into account constant and time-dependent pressure gradients acting on the fluid since the same instant when the plate starts it´s movement. Taking advantage of the orthogonality and superposition properties solutions were foundfor both considered cases. Considering a time-dependent pressure gradient, it was found a general solution for the Couette flow for a particular time function. It was found that the solution for a time-dependent pressure gradient includes the solutions for a zero pressure gradient and for a constant pressure gradient.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)