118 resultados para ion implantation and irradiation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is presented a study conducted on the physical and electrochemical properties of fluorinated a-C:H films deposited onto a commercial aluminum alloy (AA 5052). The coatings were deposited from mixtures of 91% of acetylene and 9% of argon by plasma immersion ion implantation and deposition technique, PIIID. Total gas pressure was 44 Pa and deposition time (t(dep)) was varied from 300 to 1200 s. The depositing plasmas were generated by the application of radiofrequency power (13.56 MHz, 100W) to the upper electrode and high voltage negative pulses (2400 V. 300 Hz) to the sample holder. Fluorine was incorporated in a post-deposition plasma treatment (13.56 MHz, 70W, 13 Pa) generated from sulfur hexafluoride atmosphere. Chemical structure and composition of the films were investigated using infrared reflectance/absorbance spectroscopy and X-ray photoelectron spectroscopy. The corrosion resistance of the layers was determined by electrochemical impedance spectroscopy (EIS) in a 3.5% NaCl solution, at room temperature. Films presented good adhesion to the substrates and are classified as hydrogenated amorphous carbon (a-C:H) with oxygen traces. Fluorine was detected in all the samples after the post-deposition treatment being its proportion independent on the deposition time. Film thickness presented different tendencies with t(dep), revealing the variation of the deposition rate as a function of the deposition time. Such fluorinated a-C:H films improved the corrosion resistance of the aluminum surface. In a general way the corrosion resistance was higher for films prepared with lower deposition times. The variation of sample temperature with t(dep) was found to be decisive for the concentration of defects in the films and, consequently, for the performance of the samples in electrochemical tests. Results are interpreted in terms of the energy delivered to the growing layer by ionic bombardment. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the performance of a-C: H films produced by the hybrid Plasma Immersion Ion Implantation and Deposition technique as lubricating layers for a steel forming tool has been investigated. Hardened steel (AISI M2, 64 HRC) plates coated with a commercial TiN layer were used as substrates and the films were deposited in a vacuum chamber fitted with two parallel-plate electrodes. The discharges were generated in atmospheres composed of 91% C2H2 and 9% Ar by the application of radiofrequency power (13.56 MHz, 100 W) to the upper electrode while the lower one, also used as the sample holder, was biased with high voltage negative pulses (3.6 kV, 30 mu s, 300 Hz). A deposition time of 840 s was used. The effects of the gas pressure, p, on thickness, molecular structure, wettability, surface morphology and topography, hardness and friction coefficient of the films lwere investigated. Film thickness increased from 0.3 to 0.5 mu m when p was increased from 2.7 to 16.5 Pa. Generally, the films were slightly hydrophilic, with contact angles of around 84 degrees, and the deposition decreased the roughness of the steel. A polymer-like structure was detected in high pressure depositions and an amorphous carbon structure derived from the low pressure procedures. Hardness decreased from 8.2 to 7.0 GPa with increasing p. Improvement in tribological performance was indicated by the fall in the friction coefficient from 0.5 to 0.2 as the deposition pressure was reduced. Operating at the latter value (of mu) would lead to a significant reduction in wear and hence to significant economy in diverse industrial applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin polymeric films deposited by plasma are very atractive for many industrial and scientific applications, in areas such as electronics, mechanics, coatings, biomaterials, among others, due to its favorable properties such as good adhesion to the substrate, high crosslinking, nanomectric thickness, homogeneity, etc. In this work, thin films were deposited by plasma immersion ion implantation and deposition technique from a hexamethyldisilazane/argon mixture at different proportions. These films were subjected to several characterizations, such as, contact angle, which presented values near to 100 degrees, surface energy, with values near to 31 mJ/m2, hardness with values between 0.7 and 2.6 GPa, thickness from 100 to 200 nm, refractive index from 1.56 to 1.64, molecular structure presenting the following functional groups in the infrared spectra region: CHx from 2960 to 2900 cm-1; Si-H around 2130 cm-1; CH3 in Si-(CH3)x around 1410 cm-1; CH3 in Si-(CH3)x in 1260 cm-1; N-H around 1180 cm-1; CH2 in Si-CH2-Si bonds around 1025 cm-1; Si-O in Si-O-Si from 1020 to 1100 cm-1; Si-N in Si-H-Si bonds around 940 cm-1; CH3 in Si-(CH3)3 in 850 cm-1; Si-C bonds in Si-(CH3)2 around 800 cm-1; and Si-H in 680 cm-1 . From these characterizations, it was possible to conclude that the concentration of argon or hexamethyldisilazane in the mixture changed the resulting polymer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of ion irradiation on fluorinated plasma polymer films are investigated using profilometry, surface contact-angle measurements, infrared reflection absorption spectroscopy (IRRAS) and X-ray photoelectron spectroscopy (XPS). Remarkably, helium plasma immersion ion implantation (PIII) of several amorphous hydrogenated fluorinated plasma polymers deposited from C(2)H(2)-SF(6), C(6)H(6)-SF(6) or C(6)F(6) produces film compactions of up to 40%, and modifies the surface energy in the 35 to 65 dyn cm(-1) range. As revealed by IRRAS and XPS, the films contain C-H, C-C, C=C, C=O, O-H and C-F groups. XPS spectra confirm the presence of N (typically similar to 5%). The films produced from SF(6)-containing plasmas also contain S. For irradiation times of 80 min, the film carbon content is increased, and the fluorine content is greatly reduced, by factors of about 3 to 15, depending on the initial film composition. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)