77 resultados para heating rate
Resumo:
In this work the influence of Ag additions on the thermal behavior of the Cu-11 mass% Al alloy was studied using differential scanning calorimetry, in situ X-ray diffractometry and scanning electron microscopy. The results indicated that changes in the heating rate shift the peak attributed to alpha phase formation to higher temperatures, evidencing the diffusive character of this reaction. The activation energy value for the alpha phase formation reaction, obtained from a non-isotherm kinetic model, is close to that corresponding to Cu atoms self diffusion, thus confirming that this reaction is dominated by Cu atoms diffusion through the martensite matrix.
Resumo:
Bi4Ti4O15 [BBT], a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of BaTiO3 [BT] and Bi4Ti3O12 [BIT] obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. BBT ceramics were sintered at 1100C for 4 h without pre-calcination step within heating rate 10C/min. The formation of phase and crystal structure of BT, BIT and BBT were approved using X-ray analysis. The morphology of obtained powders and microstructure were exhamined using scanning electron microscopy. The electrical properties of sintered samples were carried out.
Europium(III) Concentration Effect on the Spectroscopic and Photoluminescent Properties of BaMoO4:Eu
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Additions of 0.5 to 2.0 mol% of CoO or MnO2 onto SnO, promote densification of this oxide up to 99% of theoretical density. The temperature of the maximum shrinkage rate (TM) and the relative density in the maximum densification rate (p*) during constant sintering heating rate depend on the dopant concentration. Thus, dopant concentration controls the densifying and nondensifying mechanisms during sintering. The densification of SnO2 witih addition of CoO or MnO, is explained in terms of the creation of oxygen vacancies.
Resumo:
The microstructural evolution, grain growth and densification for the varistor systems ZnO-Bi2O3 (ZB), ZnO-Bi2O3-Sb2O3 (ZBS), ZnO-Bi2O3-Sb2O3-MnO-Cr 2O3-CoO (ZBSCCM) were studied using constant heating rate sintering, scanning electron microscopy (SEM) and in situ phase formation measurement by high temperature X-ray diffraction (HT-XRD). The results showed that the densifying process is controlled by the formation and decomposition of the Zn2Bi3Sb3O14 pyrochlore (PY) phase for the ZBS and ZBSCCM systems. The addition of transition metals (ZBSCCM system) alters the formation and decomposition reaction temperatures of the pyrochlore phase and the morphology of the Zn7Sb2O12 spinel phase. Thus, the spinel grains act as inclusions and decrease the ZnO grain growth rate. Spinel grain growth kinetics in the ZBSCCM system showed an n value of 2.6, and SEM and HT-XRD results indicate two grain growth mechanisms based on coalescence and Ostwald ripening. © 1996 Chapman & Hall.
Resumo:
Ferroelectric ceramic particles based on lead titanate zirconate (PZT) were dispersed in a polymer matrix based on castor oil. After the poling process, the pyroelectric activity of this composite was measured using a direct method in which a linear heating rate was applied to the pre-poled samples. The pyroelectric coefficient at 343 K is comparable with that of a PZT-poly(vinylidene fluoride) (PVDF) composite and significantly higher than that of PVDF. © 1998 Kluwer Academic Publishers.
Resumo:
Tin dioxide is an n-type semiconductor that when doped with other metallic oxides exhibits non-linear electric behavior with high non-linear coefficient values typical of a varistor. In this work, electrical properties of the SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 ceramics systems were studied with the objective of analyzing the influence of MnO2 on sintering behavior and electrical properties of these systems. The compacts were prepared by powder mixture process and sintered at 1300°C for 1 hour, in air, using a constant heating rate of 10°C/min. The morphological and structural properties were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The densities of the sintered ceramics were measured using the Archimedes method. The SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 systems presented breakdown fields (Eb) about 3100 V.cm-1 and 3800 V.cm-1, respectively, and non-linear coefficient (α) about 10 and 20, respectively.
Resumo:
PbMg1/3Nb2/3O3 (PMN) powder was prepared by citrate organic solution, and barium titanate (BT) seed particles were added to encourage the perovskite phase formation. Sintering was followed using the constant heating rate mode of a dilatometer, and it was observed that the seed concentration affected the PMN shrinkage rate and crystal structure. The study of the lattice parameters of the samples after the sintering process indicates that the diffusion of the titanium and of the barium inside perovskite and pyrochlore PMN phases occurs. Moreover, this substitution provoked a decrease of the lattice parameters as showed by the Rietveld refinement.
Resumo:
PMN powder samples with PbO excess of 0, 1,2 and 3% were submitted to the pressing and sintering at 1200°C for 4h with a heating rate of 3°C/min. A new sintering system, developed at our laboratories, was used. It allows obtaining more information on the sintering process. The sintered samples in the new system were compared to sintered samples in the C system. The microstructure, dielectric properties and the effect of the PbO excess in different sintering systems were compared. The N system permitted to obtain a ceramic with better properties, such density, dielectric constant and very homogeneous microstructure.
Resumo:
Titanium dioxide (rutile) has a lot of interesting and useful features and hence is widely utilized for application. It has been used as white pigment, photocatalyst, biocompatible material and semiconductor material used in solar battery. In semiconducting TiO2 oxygen vacancies are said to play an important role in the electrical conduction. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature can distinguish among the different atomic jumps, which occur in the various phases or at different local ordering. In this paper, it is reported anelastic relaxation measurements in TiO2 samples using a torsion pendulum operating in frequencies around 40Hz, in the temperature range between -173°C to 330°C with heating rate of 1°C/min. The results shown a reduction in the elasticity modulus with the increase in the corn starch content used for this consolidation.
Resumo:
Since the discovery of the high Tc superconductors, several works have been made about the different properties of these materials. Anelastic spectroscopy experiments are sensitive tools to the study of defects in solids and phase transitions. By this technique, we can distinguish the different types of atomic jumps that happen to different temperatures. The intensity of the peaks in the anelastic spectrum and the step in the torsional modulus are related with the concentration of the relaxing entities, and the position of the peaks is determined by its mobility. In this paper, the study on Bi and Sm based superconducting oxides was made by anelastic relaxation measurements using a torsion pendulum. The samples were submitted to successive thermal treatments in high vacuum, in the temperature range between 100 K and 650 K, heating rate about 1 K/min. For Bi based superconducting oxides the results shown two peaks, that were associated to interstitial oxygen mobility and to orthorhombic to monoclinic phase transition. For Sm based superconducting oxides the results shown a relaxation peak that was attributed to the jumps of the oxygen atoms in the inter-chains O1 and 05 of the lattice.
Resumo:
Recent studies have been done to achieve biomedical alloys containing non-toxic elements and presenting low elastic moduli. It has been reported that Ti-Nb-Zr alloys rich in beta phase, especially Ti-13Nb-13Zr, have potential characteristics for substituting conventional materials such as Ti-6Al-4V, stainless steel and Co alloys. The aim of this work is to study the internal friction (IF) of Ti-13Nb-13Zr (TNZ) alloy due to the importance of the absorption impacts in orthopedic applications. The internal friction of this alloy produced by arc melting was measured using an inverted torsion pendulum with the free decay method. The measurements were performed from 77 to 700 K with heating rate of 1 K/min, in a vacuum better than 10-5 mBar. The results show a relaxation structure at high temperature strongly dependent on microstructure of the material. Qualitative discussions are presented for the experimental results, and the possibility of using the TNZ as a high damping material is briefly mentioned.
Resumo:
The indirect adhesive procedures constitute recently a substantial portion of contemporary esthetic restorative treatments. The resin cements have been used to bond tooth substrate and restorative materials. Due to recently introduction of the self-bonding resin luting cement based on a new monomer, filler and initiation technology has become important to study the degree of conversion of these new materials. In the present work the polymerization reaction and the filler content of dual-cured dental resin cements were studied by means of infra-red spectroscopy (FT-IR) and thermogravimetry (TG). Twenty specimens were made in a metallic mold (8 mm diameter × 1 mm thick) from each of 2 cements, Panavia® F2.0 (Kuraray) and RelyX™ Unicem Applicap (3M/ESPE). Each specimen was cured with blue LED with power density of 500 mW/cm 2 for 30 s. Immediately after curing, 24 and 48 h, and 7 days DC was determined. For each time interval 5 specimens were pulverized, pressed with KBr and analyzed with FT-IR. The TG measurements were performed in Netzsch TG 209 under oxygen atmosphere and heating rate of 10°C/min from 25 to 700°C. A two-way ANOVA showed DC (%) mean values statistically significance differences between two cements (p < 0.05). The Tukey's test showed no significant difference only for the 24 and 48 h after light irradiation for both resin cements (p > 0.05). The Relx-Y™ Unicem mean values were significantly higher than Panavia® F 2.0. The degree of conversion means values increasing with the storage time and the filler content showed similar for both resin cements. © 2009 Pleiades Publishing, Ltd.
Resumo:
Glass foams using float glass waste and sodium hydroxide were produced. The influence of the sodium hydroxide amount in the foam formulation was studied. Titanium dioxide was used as a strengthening agent. The variations of temperature, heating rate and sintering time were investigated during the synthesis process. Open porosity was estimated using mercury porosimetry. The morphology of the glass foams was evaluated using scanning electron microscopy, phase formation was studied using X-ray diffraction, and chemical composition was estimated using X-ray fluorescence. As a result, glass foams with macroporosity were obtained. Since the glass foams used glass waste as reactant, the results suggest the development of an alternative route for glass recycling. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
We investigate theoretically a ferrofluid in the presence of a rotating magnetic field using a phenomenological approach based on a equation of motion for the magnetization. We verify that the heating rates of the system display a heat transfer between the host liquid and the magnetic nanoparticles (MNPs), with symmetric profiles dependent on the vorticity value. As a result, the total heating rate reveals a magnetovortical antiresonance and characterizes the suppression of the dissipation. © 2012 Springer Science+Business Media, LLC.