187 resultados para coenzyme M reductase
Resumo:
Among the nutrients that are essential for the biological nitrogen fixation by soybean plants, molybdenum stands out for being a cofactor of the nitrate reductase, affecting enzymatic activity and, consequently, the nodulation process. The research had as objective to evaluate the effects of molybdenum application on soybean nodulation and nitrate reductase activity. The experiment was conduced in greenhouse, sowing soybean in 12 L pots, with two plants per plot. The treatments consisted of two application via (with the seeds and leaf dressing) and two molybdenum doses (12 and 24 g ha(-1) with the seeds; 30 and 60 g ha(-1) leaf dressing) in ammonium molybdate form, plus the control. The number and dry mass of nodules and nitrogen content in soybean leaves were evaluated. Samples of leaves for the evaluation of nitrate reductase activity were taken at 10 a.m. and 10 p.m. It was concluded that soybean nodulation is affected by Mo dose and application via, resulting in higher number and weight of nodules when it is applied with the seeds. The enzymatic activity of the nitrate reductase is influenced by Mo fertilization and it is higher for leaf dressing with the double of the recommended dose.
Resumo:
Background: Diet compounds may influence obesity-related cardiac oxidative stress and metabolic sifting. Carbohydrate-rich diet may be disadvantageous from fat-rich diet to cardiac tissue and glycemic index rather than lipid profile may predict the obesity-related cardiac effects.Materials and methods: Male Wistar rats were divided into three groups (n=8/group): (C) receiving standard chow (3.0 kcal/g); (CRD) receiving carbohydrate-rich diet (4.0 kcal/g), and (FRD) receiving fat-rich diet (4.0 kcal/g). Rats were sacrificed after the oral glucose tolerance test (OGTT) at 60 days of dietary treatments. Lipid profile and oxidative stress parameters were determined in serum. Myocardial samples were used to determine oxidative stress, metabolic enzymes, glycogen and triacylglycerol.Results: FRD rats showed higher final body weight and body mass index than CRD and C. Serum cholesterol and low-density lipoprotein were higher in FRD than in CRD, while triacylglycerol and oxidized low-density lipoprotein cholesterol were higher in CRD than in FRD. CRD rats had the highest myocardial lipid hydroperoxide and diminished superoxide dismutase and catalase activities. Myocardial glycogen was lower and triacylglycerol was higher in CRD than in C and FRD rats. Although FRD rats had depressed myocardial-reducing power, no significant changes were observed in myocardial energy metabolism. Myocardial beta-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase, as well as the enhanced lactate debydrogenase/citrate synthase ratio indicated that fatty acid degradation was decreased in CRD rats. Glycemic index was positively correlated with obesity-related cardiac effects.Conclusions: Isoenergetic carbohydrate-rich and fat-rich diets induced different degree of obesity and differently affected lipid profile. Carbohydrate-rich diet was deleterious relative to fat-rich diet in the heart enhancing lipoperoxidation and shifting the metabolic pathway for energy production. Glycemic index rather than dyslipidemic profile may predict the obesity effects on cardiac tissue. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ethanol-induced oxidative damage is commonly associated with the generation of reactive oxygen molecules, leading to oxidative stress. Considering that antioxidant activity is an important mechanism of action involved in cytoprotection, the aim of this work was to evaluate the antioxidant properties of the alkaloid indigo (1) (2 mg/kg, p. o.), obtained from the leaves of Indigofera truxillensis Kunth (Fabaceae), on rat gastric mucosa submitted to ethanol-induced (100%, 1 mL, p.o.) gastric ulcer. Enzymatic assays and DNA fragmentation analysis were performed. When ethanol was administered to the control group, the sulfhydryl content (SH) and the glutathione peroxidase (GPx) activity decreased by 41% and 50%, respectively; in contrast, superoxide dismutase (SOD) and glutathione reductase (GR) activities increased by 56% and 67%, respectively. Additionally, myeloperoxidase (MPO) activity, a marker for free radical generation caused by polymorphonuclear neutrophil (PMN) tissue infiltration, also increased 4.5-fold after ethanol treatment. Rat gastric mucosa exposed to ethanol showed DNA fragmentation. Indigo alkaloid pretreatment protected rats from ethanol-induced gastric lesions. This effect was determined by the ulcerative lesion area (ULA), indicating an inhibition of around 80% at 2 mg/kg. This alkaloid also diminished GPx activity, which was higher than that observed with ethanol alone. However, this effect was counterbalanced by increased GR activity. Indigo was unable to restore alterations in SOD activity promoted by ethanol. After indigo pretreatment, SH levels and MPO activity remained normal and gastric mucosa DNA damage caused by ethanol was also partially prevented by indigo. These results suggest that the gastroprotective mechanisms of indigo include non-enzymatic antioxidant effects and the inhibition of PMN infiltration which, in combination, partially protect the gastric mucosa against ethanol-induced DNA damage.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Ischaemia and reperfusion effects on skeletal muscle tissue: morphological and histochemical studies
Resumo:
This was a study on the oxidative stress due to ischaemia (I) and reperfusion (R) in skeletal muscle tissue. Using a tourniquet, groups of rats were submitted to ischaemia for 4 h, followed by different reperfusion periods. The animals were divided in four groups: control; 4 h of ischaemia (IR); 4 h of ischaemia plus 1 h reperfusion (IR-1 h); 4 h of ischaemia plus 24 h reperfusion (IR-24 h); and 4 h of ischaemia plus 72 h reperfusion (IR-72 h). At the end of the procedures, samples of soleus muscle were collected and frozen in n-hexane at -70 degrees C. Cryostat sections were submitted to haematoxylin-eosin, succinate dehydrogenase (SDH) and nicotinamide adenine dinucleotide-tetrazolium reductase (NADH-TR) stains. An additional muscle sample was processed for electron microscopy. No alterations were found in control animals. IR group showed fibres had normal aspect besides some round, acidophilic and hypertrophic fibres. There were several fibres with angular outlines and smaller diameters in this group compared with control group. NADH-TR/SDH reaction was moderately intense in most fibres. In some fibres, cytoplasm showed areas without activity and other fibres had very intense reactivity. IR-1 h group showed oedema hypercontracted fibres with disorganized myofibrils, mitochondria with focal lesions and dilated sarcoplasmic reticulum. NADH-TR/SDH reaction was moderate to weak. IR-24 h showed intense inflammatory infiltrate in the endomysium and perimysium. NADH-TR/SDH reaction was similar to IR-1 h. IR-72 h showed necrotic fibres, areas with inflammatory infiltrate, reduced muscle fibres at different stages of necrosis and phagocytosis, and many small round and basophilic fibres characterizing a regeneration process. NADH-TR/SDH reaction was weak to negative. Our results suggest that ischaemia and the subsequent 1-, 24- and 72-h reperfusions induced progressive histological damage. Although progressive, it may be reversible because there were ultrastructural signs of recovery after 72-h reperfusion. This recovery could in part be due to the low oxidative stress identified by the morphological and histochemical analysis.
Resumo:
This study examined whether sucrose-rich diet (SRD)-induced hyperglycaemia, dyslipidemia and oxidative stress may be inhibited by N-acetylcysteine (C5H9-NO3S), an organosulfur from Allium plants. Male Wistar 40 rats were divided into four groups (n = 10): (C) given standard chow and water; (N) receiving standard chow and 2 mg/l N-acetylcysteine in its drinking water; (SRD) given standard chow and 30% sucrose in its drinking water; and (SRD-N) receiving standard chow, 30% sucrose and N-acetylcysteine in its drinking water. After 30 days of treatment, SRD rats had obesity with increased abdominal circumference, hyperglycaemia, by dyslipidemia and hepatic triacylglycerol accumulation. These adverse effects were associated with oxidative stress and depressed lipid degradation in hepatic tissue. The SRD adverse effects were not observed in SDR-N rats. N-Acetylcysteine reduced the oxidative stress, enhancing glutathione-peroxidase activity, and normalizing lipid hydroperoxyde, reduced glutathione and superoxide dismutase in hepatic tissue of SRD-N rats. The beta-hydroxyacyl coenzyme-A dehydrogenase and citrate-synthase activities were increased in SRD-N rats, indicating enhanced lipid degradation in hepatic tissue as compared to SRD. SRD-N rats had reduced serum oxidative stress and diminished glucose, triacylglycerol, very-low-density lipoprotein (VLDL), oxidized low-density lipoprotein (alpha-LDL) and cholesterol/highdensity lipoprotein (HDL) ratio in relation to SRD. In conclusion, NAC offers promising therapeutic values in prevention of dyslipidemic profile and alleviation of hyperglycaemia in high-sucrose intake condition by improving antioxidant defences. N-Acetylcysteine had also effects preventing metabolic shifting in hepatic tissue, thus enhancing fat degradation and reducing body weight gain in conditions of excess sucrose intake. The application of this agent in food system via exogenous addition may be feasible and beneficial for antioxidant protection. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
Alcoholism is rampant in modern society and some antioxidant compound could perhaps be useful to reduce the damage done by alcohol consumption and abstinence. The present study was undertaken to investigate the association of N-acetylcysteine (NAC) intake, alcoholism, and alcohol abstinence on lipid profile, in vivo low-density lipoprotein (LDL) oxidation, oxidative stress, and antioxidant status in serum and liver of rats. Initially, male Wistar 30 rats were divided into two groups: (C, N = 6) given standard chow and water; (E, N = 24) receiving standard chow and aqueous ethanol solution in semi-voluntary research. After 30 days of ethanol exposure, (E) group was divided into four subgroups (N = 6/group): (E-E) continued drinking 30% ethanol solution; (E-NAC) drinking ethanol solution containing 2 g/L NAC (AB) changed ethanol solution to water; (AB-NAC) changed ethanol to aqueous solution 2 g/L NAC. After 15 days of the E-group division, E-E rats had higher serum alanine transaminase, lower body weight, and surface area, despite higher energy intake than C. E-E rats had also lower feed efficiency, dyslipidemia with enhanced triacyl glycerol, very low-density lipoprotein (VLDL), lipid hydroperoxide (LH) and in vivo oxidized-LDL (ox-LDL). AB, E-NAC, and AB-NAC rats ameliorated serum oxidative stress markers and normalized serum lipids. E-E rats had higher hepatic LH and lower reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio than C, indicating hepatic oxidative stress. AB and E-NAC rats normalized hepatic LH, GSSG, and the GSH/GSSG ratio, compared to E-E. AB-NAC rats had the lowest serum ox-LDL, hepatic LH levels, and the highest GSH reductase activity in hepatic tissue. In conclusion, the present study brought new insights into alcohol consumption, because ethanol exposure enhanced serum in vivo ox-LDL, as well as serum and hepatic oxidative stress. N-acetylcysteine offers promising therapeutic value to inhibit ethanol-induced adverse effects. Ethanol withdrawal had beneficial effects on serum lipids, but was more effective when coupled with NAC supplementation. Ethanol abstinence and NAC intake interact synergistically, improving serum lipids and hepatic antioxidant defenses. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)