129 resultados para STRINGS QUARTETS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chameleons are scalar fields that couple directly to ordinary matter with gravitational strength, but which nevertheless evade the stringent constraints on tests of gravity because of properties they acquire in the presence of high ambient matter density. Chameleon theories were originally constructed in a bottom-up, phenomenological fashion, with potentials and matter couplings designed to hide the scalar from experiments. In this paper, we attempt to embed the chameleon scenario within string compactifications, thus UV completing the scenario. We look for stabilized potentials that can realize a screening mechanism, and we find that the volume modulus rather generically works as a chameleon, and in fact the supersymmetric potential used by Kachru, Kallosh, Linde and Trivedi (KKLT) is an example of this type. We consider all constraints from tests of gravity, allowing us to put experimental constraints on the KKLT parameters.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
After adding a pair of non-minimal fields and performing a similarity transformation, the BRST operator in the pure spinor formalism is expressed as a conventional-looking BRST operator involving the Virasoro constraint and (b, c) ghosts, together with 12 fermionic constraints. This BRST operator can be obtained by gauge-fixing the Green-Schwarz superstring where the 8 first-class and 8 second-class Green-Schwarz constraints are combined into 12 first-class constraints. Alternatively, the pure spinor BRST operator can be obtained from the RNS formalism by twisting the ten spin-half RNS fermions into five spin-one and five spin-zero fermions, and using the SO(10)/U(5) pure spinor variables to parameterize the different ways of twisting. GSO(-) vertex operators in the pure spinor formalism are constructed using spin fields and picture-changing operators in a manner analogous to Ramond vertex operators in the RNS formalism.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using the non-minimal version of the pure spinor formalism, manifestly super-Poincare covariant superstring scattering amplitudes can be computed as in topological string theory without the need of picture-changing operators. The only subtlety comes from regularizing the functional integral over the pure spinor ghosts. In this paper, it is shown how to regularize this functional integral in a BRST-invariant manner, allowing the computation of arbitrary multiloop amplitudes. The regularization method simplifies for scattering amplitudes which contribute to ten-dimensional F-terms, i.e. terms in the ten-dimensional superspace action which do not involve integration over the maximum number of theta's.
Resumo:
We use the non-minimal pure spinor formalism to compute in a super-Poincare covariant manner the four-point massless one and two-loop open superstring amplitudes, and the gauge anomaly of the six-point one-loop amplitude. All of these amplitudes are expressed as integrals of ten-dimensional superfields in a pure spinor superspace which involves five theta coordinates covariantly contracted with three pure spinors. The bosonic contribution to these amplitudes agrees with the standard results, and we demonstrate identities which show how the t(8) and epsilon(10) tensors naturally emerge from integrals over pure spinor superspace.
Resumo:
Wind-excited vibrations in the frequency range of 10 to 50 Hz due to vortex shedding often cause fatigue failures in the cables of overhead transmission lines. Damping devices, such as the Stockbridge dampers, have been in use for a long time for supressing these vibrations. The dampers are conveniently modelled by means of their driving point impedance, measured in the lab over the frequency range under consideration. The cables can be modelled as strings with additional small bending stiffness. The main problem in modelling the vibrations does however lay in the aerodynamic forces, which usually are approximated by the forces acting on a rigid cylinder in planar flow. In the present paper, the wind forces are represented by stochastic processes with arbitrary crosscorrelation in space; the case of a Kármán vortex street on a rigid cylinder in planar flow is contained as a limit case in this approach. The authors believe that this new view of the problem may yield useful results, particularly also concerning the reliability of the lines and the probability of fatigue damages. © 1987.
Resumo:
In this work, the behaviour of the system with N massive parallel rigid wires is analysed. The aim is to explore its resemblance to a system of multiple cosmic strings. Assuming that it behaves like a 'gas' of massive rigid wires, we use a thermodynamics approach to describe this system. We obtain a constraint relating the linear mass density of the massive wires, the number of the massive wires in the system and the dispersion velocity of the system. © 1996 IOP Publishing Ltd.
Resumo:
We review a formalism of superstring quantization with manifest six-dimensional spacetime supersymmetry, and apply it to AdS3 × S3 backgrounds with Ramond-Ramond flux. The resulting description is a conformal field theory based on a sigma model whose target space is a certain supergroup SU′(2|2).
Resumo:
Using pure spinors, the superstring is covariantly quantized. For the first time, massless vertex operators are constructed and scattering amplitudes are computed in a manifestly ten-dimensional super-Poincaré covariant manner. Quantizable non-linear sigma model actions are constructed for the superstring in curved backgrounds, including the AdS 5 × S 5 background with Ramond-Ramond flux.
Resumo:
Using pure spinors, the superstring was recently quantized in a manifestly ten-dimensional super-Poincaré covariant manner and a covariant prescription was given for tree-level scattering amplitudes. In this paper, we prove that this prescription is cyclically symmetric and, for the scattering of an arbitrary number of massless bosons and up to four massless fermions, it agrees with the standard Ramond-Neveu-Schwarz prescription.