67 resultados para Resistivity sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach for damage detection in Structural Health Monitoring (SHM) systems, which is based on the Electromechanical Impedance (EMI) principle and Autoregressive (AR) models. Typical applications of EMI in SHM are based on computing the Frequency Response Function (FRF). In this work the procedure is based on the EMI principle but the results are determined through the coefficients of AR models, which are computed from the time response of PZT transducers bonded to the monitored structure, and acting as actuator and sensors at the same time. The procedure is based on exciting the PZT transducers using a wide band chirp signal and getting its time response. The AR models are obtained in both healthy and damaged conditions and used to compute statistics indexes. Practical tests were carried out in an aluminum plate and the results have demonstrated the effectiveness of the proposed method. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new method to estimate hole diameters and surface roughness in precision drilling processes, using coupons taken from a sandwich plate composed of a titanium alloy plate (Ti6Al4V) glued onto an aluminum alloy plate (AA 2024T3). The proposed method uses signals acquired during the cutting process by a multisensor system installed on the machine tool. These signals are mathematically treated and then used as input for an artificial neural network. After training, the neural network system is qualified to estimate the surface roughness and hole diameter based on the signals and cutting process parameters. To evaluate the system, the estimated data were compared with experimental measurements and the errors were calculated. The results proved the efficiency of the proposed method, which yielded very low or even negligible errors of the tolerances used in most industrial drilling processes. This pioneering method opens up a new field of research, showing a promising potential for development and application as an alternative monitoring method for drilling processes. © 2012 Springer-Verlag London Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of the semiconductor NiO are deposited using a straightforward combination of simple and versatile techniques: the co-precipitation in aqueous media along with the dip- coating process. The obtained material is characterized by gravimetric/differential thermal analysis (TG-DTA) and X-ray diffraction technique. TG curve shows 30 % of total mass loss, whereas DTA indicates the formation of the NiO phase about 578 K (305 C). X-ray diffraction (XRD) data confirms the FCC crystalline phase of NiO, whose crystallinity increases with thermal annealing temperature. UV-Vis optical absorption measurements are carried out for films deposited on quartz substrate in order to avoid the masking of bandgap evaluation by substrate spectra overlapping. The evaluated bandgap is about 3.0 eV. Current-voltage (I-V) curves measured for different temperatures as well as the temperature-dependent resistivity data show typical semiconductor behavior with the resistivity increasing with the decreasing of temperature. The Arrhenius plot reveals a level 233 meV above the conduction band top, which was attributed to Ni2+ vacancy level, responsible for the p-type electrical nature of NiO, even in undoped samples. Light irradiation on the films leads to a remarkable behavior, because above bandgap light induced a resistivity increase, despite the electron-hole generation. This performance was associated with excitation of the Ni 2+ vacancy level, due to the proximity between energy levels. © 2012 Springer Science+Business Media New York.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium copper titanate, CaCu3Ti4O12, CCTO, thin films with polycrystalline nature have been deposited by RF sputtering on Pt/Ti/SiO2/Si (100) substrates at a room temperature followed by annealing at 600 °C for 2 h in a conventional furnace. The CCTO thin film present a cubic structure with lattice parameter a = 7.379 ±0.001 Å free of secondary phases. The observed electrical features of CCTO thin films are highly dependent on the [CaO12], [CaO 4], [CuO11], [CuO11Vx 0] and [TiO5.VO] clusters. The CCTO film capacitor showed a dielectric loss of 0.40 and a dielectric permittivity of 70 at 1 kHz. The J-V behavior is completely symmetrical, regardless of whether the conduction is limited by interfacial barriers or by bulk-like mechanisms. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of spermatic division and differentiation (spermatogenesis) occurs with intratesticular temperature lower that the corporal temperature and for that is essential that the testicular thermoregulation mechanism occurs properly. For evaluation of the scrotal surface temperature can be used the infrared thermography or testicular sensors, besides that, can be evaluated the blood flux in the spermatic cord through the Doppler ultrasonography. Therefore the objective of this study was the evaluation of the scrotal thermography and Doppler flowmetry of the testicular artery of buffaloes subjected to environmental heat stress. For that were used seven healthy buffaloes, with age of 3 and 4 years, of the Murrah breed. For the surface scrotal temperature measurement (SST, degrees C) and superficial neck temperature (SNT, degrees C) was used the infrared termography (Infra Cam (TM) of the brand FLIR Systems Inc.), then Doppler flowmetry of the testicular artery in the region of the spermatic cord through the ultrasonography (Mylab 5, Esaote (R)) and measurement of the rectal temperature (RT, degrees C). The evaluations were done in two moments: moment 1 (M1) with all the animals in the shade (Temperature=32,2 degrees C) and moment 2 (M2) after 3 hours of exposure of animals to the sun (Temperature=38,7 degrees C To calculate the resistivity index (RI) and pulsatility index (PI), spectra were obtained from pulsed Doppler in three random regions of the testicular artery in the spermatic cord. Data were subjected to analysis of variance (ANOVA) followed by T test, using a significance level of 5%. There was an increase (p<0,05) of RT (37,4 +/- 0,4(a) vs 39,0 +/- 0,3(b); M1 and M2 respectively), SST (30,6 +/- 1,4(a) vs 35,2,0 +/- 1,0(b); M1 and M2 respectively) and SNT (33,1 +/- 2,5(a) vs 38,5,0 +/- 0,3(b); M1 e M2 respectively) e RI (0,67 +/- 0,1(a) vs 0,74 +/- 0,1(b); M1 e M2 respectively) in M2. Increasing trend was observed (0,05>p>0,01) in PI (1,10 +/- 0,4(a) vs 1,23 +/- 0,2(b); M1 and M2 respectively) in M2. The results of the present study allow us to conclude the healthy buffaloes have the scrotal average surface temperature 3 degrees C lower that the body temperature and that the exposure of 3 hours to sun in healthy buffaloes causes thermal stress to the animals and changes in its surface scrotal temperature, and the Doppler flowmetry of the testicular artery demonstrating the importance of thermal management for breeding buffaloes. Besides that, the thermography and the Doppler ultrasonography presented great potential to detect changes of testicular perfusion, being a promising additional test in the buffalo andrological evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of spermatic division and differentiation (spermatogenesis) occurs with intratesticular temperature lower that the corporal temperature and for that is essential that the testicular thermoregulation mechanism occurs properly. For evaluation of the scrotal surface temperature can be used the infrared thermography or testicular sensors, besides that, can be evaluated the blood flux in the spermatic cord through the Doppler ultrasonography. Thus, the aim of this study is to analyze the testicular thermoregulation in adult buffaloes through scrotal thermography and Doppler ultrasound of testicular artery and verify its effect on sperm quality. For that were used seven healthy buffaloes, with age of 3 and 4 years, of the Murrah breed. The animals were subjected to 3 semen collections using artificial vagina, with one day of interval. In addiction, the retal temperature measurement (RT) with dry bulb thermometer, the measurement of scrotal surface temperature (SST) and body surface temperature (BST) through infrared thermography and the pulsatility (PI) and resistivity (RI) index of testicular artery by Doppler ultrasonography, were performed using 2 distinct moments: animals previously placed to shade (M1) and animals subjected to 4 hours of sun (M2). All parameters were compared by T test and the correlations were performed by Pearson test using the In Stat Graph Pad 3 (R) program. The significant level considered was 5%. There was an increase (p<0,05) of RT, SST, SNT and RI in M2. increasing trend was observed (0,05>p>0,01) PI and RI between M1 and M2. There was a low correlation between SST and semen quality. The results of this study allow us to conclude that adult buffaloes have low ability to perform body and testicular thermoregulation in situations of enviromental heat stress. However, this low capacity of testicular temperature maintenance demonstrated no correlation with the sperm kinetic parameters and sperm morphological defects in buffalo spermatozoa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes have been at the forefront of nanotechnology, leading not only to a better understanding of the basic properties of charge transport in one dimensional materials, but also to the perspective of a variety of possible applications, including highly sensitive sensors. Practical issues, however, have led to the use of bundles of nanotubes in devices, instead of isolated single nanotubes. From a theoretical perspective, the understanding of charge transport in such bundles, and how it is affected by the adsorption of molecules, has been very limited, one of the reasons being the sheer size of the calculations. A frequent option has been the extrapolation of knowledge gained from single tubes to the properties of bundles. In the present work we show that such procedure is not correct, and that there are qualitative differences in the effects caused by molecules on the charge transport in bundles versus isolated nanotubes. Using a combination of density functional theory and recursive Green's function techniques we show that the adsorption of molecules randomly distributed onto the walls of carbon nanotube bundles leads to changes in the charge density and consequently to significant alterations in the conductance even in pristine tubes. We show that this effect is driven by confinement which is not present in isolated nanotubes. Furthermore, a low concentration of dopants randomly adsorbed along a two-hundred nm long bundle drives a change in the transport regime; from ballistic to diffusive, which can account for the high sensitivity to different molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of the bis[2,3,9,10,16,17,23,24-octachlorophthalocyaninate] lutetium(III) complex (LuPc2Cl32) have been prepared by the Langmuir-Blodgett and the Langmuir-Schaefer (LS) techniques. The influence of the chlorine substituents in the structure of the films and in their spectroscopic, electrochemical and sensing properties has been evaluated. The pi-A isotherms exhibit a monolayer stability greater than the observed in the unsubstituted analogue (LuPc2), being easily transferred to solid substrates, also in contrast to LuPc2. The LB and LS films present a linear growth forming stratified layers, monitored by UV-VIS absorption spectroscopy. The latter also revealed the presence of LuPc2Cl32 in the form of monomers and aggregates in both films. The FTIR data showed that the LuPc2Cl32 molecules present a non-preferential arrangement in both films. Monolayers of LB and LS were deposited onto 6 nm Ag island films to record surface-enhanced resonance Raman scattering (SERRS), leading to enhancement factors close to 2 x 10(3). Finally, LB and LS films deposited onto ITO glass have been successfully used as voltammetric sensors for the detection of catechol. The improved electroactivity of the LB and LS films has been confirmed by the reduction of the overpotential of the oxidation of catechol. The enhancement of the electrocatalytic effect observed in LB and LS films is the result of the nanostructured arrangement of the surface which increases the number of active sites. The sensors show a limit of detection in the range of 10(-5) mol/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)