99 resultados para RELATIVISTIC ENERGIES
Resumo:
We derive a set of relativistic three-particle scattering equations in the three-particle c.m. frame employing a relativistic three-particle propagator suggested long ago by Ahmadzadeh and Tjon in the c.m. frame of a two-particle subsystem. We make the coordinate transformation of this propagator from the c.m. frame of the two-particle subsystem to the three-particle c.m. frame. We also point out that some numerical applications of the Ahmadzadeh and Tjon propagator to the three-nucleon problem use unnecessary nonrelativistic approximations which do not simplify the computational task, but violate constraints of relativistic unitarity and/or covariance.
Resumo:
We study lepton pair production in heavy-ion collisions with emphasis on nonstandard contributions to the QED subprocess gamma-gamma --> l+l-. The existence of compositeness of fermions and/or bosons can be tested in this reaction up to the TeV mass scale. We show that for some processes the capabilities of relativistic heavy-ion colliders to disclose new physics surpass the possibilities of e+e- or ppBAR machines. In particular, spin-zero composite particles which couple predominantly to two photons, predicted in composite models, can be studied in a broad range of masses.
Resumo:
Using the Unruh-DeWitt detector, it is shown that a universal and continuous Lorentz transformation of temperature cannot exist for black-body radiation. Since any valid Lorentz transformation of temperature must be able to deal with black-body radiation, it is concluded that a universal and continuous temperature transformation does not exist.
Resumo:
The methodology based on the association of the variational method with supersymmetric quantum mechanics is used to evaluate the energy states of the confined hydrogen atom. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Binding energy differences of mirror nuclei for A = 15, 17, 27, 29, 31, 33, 39 and 41 are calculated in the framework of relativistic deformed mean-field theory. To fully include the effects of the polarization of the nuclear core due to the extra particle or hole, the spatial components of the vector meson fields and the photon are taken into account in a self-consistent manner. The calculated binding energy differences are systematically smaller than the experimental values and lend support to the existency of the Okamoto-Nolen-Schiffer anomaly found decades ago in nonrelativistic calculations, For the majority of the nuclei studied, however, the results are such that the anomaly is significantly smaller than the one obtained within state-of-the-art nonrelativistic calculations.
Resumo:
Relativistic confining potential models, endowed with bag constants associated to volume energy terms, are investigated. In contrast to the usual bag model, these potential bags are distinguished by having smeared bag surfaces. Based on the dynamical assumptions underlying the fuzzy bag model, these bag constants are derived from the corresponding energy-momentum tensor. Explicit expressions for the single-quark energies and for the nucleon bag constant are obtained by means of an improved analytical version of the saddle-point variational method for the Dirac equation with confining power-law potentials of the scalar plus vector (S + V) or pure scalar (S) type.
Resumo:
We compute the leading radiative correction to the Casimir force between two parallel plates in the lambdaPhi(4) theory. Dirichlet and periodic boundary conditions are considered. A heuristic approach, in which the Casimir energy is computed as the sum of one-loop corrected zero-point energies, is shown to yield incorrect results, but we show how to amend it. The technique is then used in the case of periodic boundary conditions to construct a perturbative expansion which is free of infrared singularities in the massless limit. In this case we also compute the next-to-leading order radiative correction, which turns out to be proportional to lambda(3/2).
Resumo:
For the first time, ab inito all electron fully relativistic and correlated Dirac-Fock calculations with prolapse free basis set are reported for a Super Heavy Element. We investigated the relativistic effects on bonding and on some spectroscopic constants for the darmstadtium carbide and our results at DF/CCSD(T) with a prolapse free basis set suggest for R-e, omega(e) and D-e the values of 174 pm, 1114 cm(-1) and 7.29 eV, respectively. These values are very similar to the values for PtC found on literature. It was also found that prolapse free basis set may be important to estimate the dissociation energy using Relativistic 4-components correlated methods. (c) 2007 ELsevier B.V. All rights reserved.
Resumo:
We show that relativistic mean fields theories with scalar S, and vector V, quadratic radial potentials can generate a harmonic oscillator with exact pseudospin symmetry and positive energy bound states when S = -V. The eigenenergies are quite different from those of the non-relativistic harmonic oscillator. We also discuss a mechanism for perturbatively breaking this, symmetry by introducing a tensor potential. Our results shed light into the intrinsic relativistic nature of the pseudospin symmetry, which might be important in high density systems such as neutron stars.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The electronic structure and spectroscopic properties (R(e), omega(e), omega(e)x(e), beta(e), and T(e)) of the ground state and the 22 lowest excited states of chlorine molecule were studied within a four-component relativistic framework using the MOLFDIR program package. The potential energy curves of all possible 23 covalent states were calculated using relativistic complete open shell configuration interaction approach. In addition, four component multireference configuration interaction with single and double excitation calculations were performed in order to infer the effects due to dynamical correlation in vertical excitations. The calculated properties are in good agreement with the available experimental data.
Resumo:
We discuss a relativistic free particle with fractional spin in 2+1 dimensions, where the dual spin components satisfy the canonical angular momentum algebra {Sμ, Sν} = εμνγSγ. It is shown that it is a general consequence of these features that the Poincaré invariance is broken down to the Lorentz one, so indicating that it is not possible to keep simultaneously the free nature of the anyon and the translational invariance.