247 resultados para Piezoelectric flextensional actuator (PFA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microactuator made from poly(vinylidene fluoride) (PVDF), a piezoelectric polymer, was fabricated to control the gas flow rate through a glass micronozzle. The actuator was formed by gluing together two PVDF sheets with opposite polarization directions. The sheets were covered with thin conducting films on one side, that were then used as electrodes to apply an electric field to move the valve. The actuator has a rectangular shape, 3 mm x 6 mm. The device was incorporated with a micronozzle fabricated by a powder blasting technique. Upon applying a DC voltage across the actuator electrodes, one sheet expands while the other contracts, generating an opening motion. A voltage of +300 V DC was used to open the device by moving the actuator 30 mu m, and a voltage of -200 V DC was used to close the device by moving the actuator 20 mu m lower than the relaxed position. Flow measurements were performed in a low-pressure vacuum system, maintaining the microvalve inlet pressure constant at 266 Pa. Tests carried out with the actuator in the open position and with a pressure ratio (inlet pressure divided by outlet pressure) of 0.5, indicated a flow rate of 0.36 sccm. In the closed position, and with a pressure ratio of 0.2, a flow rate of 0.32 sccm was measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pechini's method was used to prepare lead titanate zirconate with Zr/Ti ratio equal to 53/47. X-ray diffraction data revealed the presence of a rhombohedral phase, rich in zirconium, due to difference in carbonate stabilities, in PZT ceramics calcined at 600 degrees C. Infrared spectroscopy presented COO- bonds in the 1400 cm(-1) region, which disappeared after calcining at 700 degrees C. Seeds with rhombohedral (PZT 57/43) or tetragonal structure (PZT 45/55) were added to the precursor. The microstructure was differentially influenced by the nature of seed particles. Rhombohedral nuclei promoted preferential crystallization of lead zirconate. This heterogeneity directly reflected on values of k(p) and d(33). (C) 1999 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical data using ab initio perturbed ion calculation were compared with ferroelectric and piezoelectric experimental data of strontium doped PZT. Various concentrations of SrO in PZT at constant temperature and sintering time were carried out. Experimental results, such as the remanent polarization, P-R of 6.9-8.9 muC/Cm-2, the coercive field, E-C of 6.6-7.8 kVcm, and the planar coupling factor, Kp of 0.45-0.53, were compared with the energy of Zr4+ and Ti4+ ion dislocation and the lattice interaction energy which show that strontium increment in PZT alter the energies and increase the values of piezoelectric and ferroelectric variables. Calculations of lattice energy of the rhombohedral phase show that a phase non-stability is coincident with increasing experimental values of the P-R, E-C and Kp. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanochemical synthesis was applied to obtain nanocrystalline powders of composition Pb(Zr0.52Ti0.48)O-3 (PZT). Milling was performed in a planetary ball mill using vials and balls made of zirconia or steel-in order to investigate influence of milling media on the electrical properties of resulting ceramics. PZT ceramics showed high values for dielectric constant (epsilon(r)), reaching 970 at room temperature, as well as low dielectric loss (tandelta) under the optimal processing conditions. High values of remanent polarization (P-r) indicate high internal polarizability. The best samples showed piezoelectric strain constant d(33) = 347 pC/N and planar coupling factor k(P) = 0.44. Milling in ZrO2 medium prevents powder contamination and provides reproducibility of milling process. Also, PZT obtained from the powders milled in ZrO2 exhibited lower values of dielectric loss, in comparison with the PTZ obtained from the powders milled in Fe. This suggests that contamination of the powder with Fe could result in an increase of conductivity in final product. (C) 2004 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bismuth titanate (Bi4Ti3O12-BIT) films were evaluated for use as lead-free piezoelectric thin-films in micro-electromechanical systems. The films were grown by the polymeric precursor method on Pt/Ti/SiO2/Si (1 0 0) (Pt) bottom electrodes at 700 degrees C for 2 h in static air and oxygen atmospheres. The domain structure was investigated by piezoresponse force microscopy (PFM). Annealing in static air leads to better ferroelectric properties, higher remanent polarization, lower drive voltages and higher piezoelectric coefficient. on the other hand, oxygen atmosphere favors the imprint phenomenon and reduces the piezoelectric coefficient dramatically. Impedance data, represented by means of Nyquist diagrams, show a dramatic increase in the resistivity for the films annealed in static air atmopshere. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report a study of the physicochemical, dielectric and piezoelectric properties of anionic collagen and collagen-hydroxyapatite (HA) composites, considering the development of new biomaterials which have potential applications in support for cellular growth and in systems for bone regeneration. The piezoelectric strain tensor element d(14), the elastic constant s(55) and the dielectric permittivity 8(11), were measured for the anionic collagen and collagen-HA films. The thermal analysis shows that the denaturation endotherm is at 59.47 degreesC for the collagen sample. The collagen-HA composite film shows two transitions, at 48.9 and 80.65 degreesC. The X-ray diffraction pattern of the collagen film shows a broad band characteristic of an amorphous material. The main peaks associated to the crystalline HA is present in the sample of collagen-HA. In the collagen-HA composite, one can also notice the presence of other peaks with low intensities which is an indication of the formation of other crystalline phases of apatite. The scanning electron photomicrograph of anionic collagen membranes shows very thin bundles of collagen. The scanning electron photomicrography of collagen-HA film also show deposits of hydroxyapatite on the collagen fibers forming larger bundles and suggesting that a collagenous structure of reconstituted collagen fibers could act as nucleators for the formation of apatite crystal similar to those of bone. The piezoelectric strain tensor element d(14) was measured for the anionic collagen, with a value of 0.062 pC N-1, which is in good agreement compared with values reported in the literature obtained with other techniques. For the collagen-HA composite membranes, a slight decrease of the value of the piezoelectricity (0.041 pC N-1) was observed. The anionic collagen membranes present the highest density, dielectric permittivity and lowest frequency constant f.L. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gaussian basis sets (24s14p, 30s19p14d, and 33s21p14d for O (P-3), Ti (S-5), and Ba (S-1) atoms, respectively), are designed with the strategy of the Generator Coordinate Hartree-Fock method. The basis sets are then contracted to [6s4p], [10s5p4d], and [16s9p5d] to O, Ti, and Ba atoms, respectively, and used in calculations of total and orbital energies of (TiO+2)-Ti-1 and (BaO)-Ba-1 fragments for quality evaluation in molecular studies. For O atom, the [6s4p] basis set is enriched with d polarization function and used along with the [10s5p4d] and [16s9p5d] basis sets for the theoretical study of the piezoelectric effect of perovskite (BaTiO3). The results of this work evidence that the piezoelectric properties in BaTiO3 can be caused by electrostatic interactions. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible and free-standing films of piezoelectric composites made up of lead zirconate titanate (PZT) ceramic powder dispersed in a castor oil-based polyurethane (PU) matrix were obtained by spin coating and characterized as materials for sensor applications. The piezoelectric coefficients d 31 and d 33 were measured with the usual technique. The piezoelectric charge constant d 33 yields values up to ≤24 pC/N, even at lower PZT content (33 vol%). Some desirable properties like piezoelectricity, flexibility and good mechanical resistance show this new material to be a good alternative for use as sensors and actuators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates both theoretically and experimentally the effect of the location and number of sensors and magnetic bearing actuators on both global and local vibration reduction along a rotor using a feedforward control scheme. Theoretical approaches developed for the active control of beams have been shown to be useful as simplified models for the rotor scenario. This paper also introduces the time-domain LMS feedforward control strategy, used widely in the active control of sound and vibration, as an alternative control methodology to the frequency-domain feedforward approaches commonly presented in the literature. Results are presented showing that for any case where the same number of actuators and error sensors are used there can be frequencies at which large increases in vibration away from the error sensors can occur. It is also shown that using a larger number of error sensors than actuators results in better global reduction of vibration but decreased local reduction. Overall, the study demonstrated that an analysis of actuator and sensor locations when feedforward control schemes are used is necessary to ensure that harmful increased vibrations do not occur at frequencies away from rotor-bearing natural frequencies or at points along the rotor not monitored by error sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft and aerospace structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. This article shows some steps that should be followed in the design of a smart structure. It is discussed: the optimal placement of actuators, the model reduction and the controller design through techniques involving linear matrix inequalities (LMI). It is considered as constraints in LMI: the decay rate, voltage input limitation in the actuators and bounded output peak (output energy). Two controllers robust to parametric variation are designed: the first one considers the actuator in non-optimal location and the second one the actuator is put in an optimal placement. The performance are compared and discussed. The simulations to illustrate the methodology are made with a cantilever beam with bonded piezoelectric actuators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 8051-based microcontroller tester has been designed to reduce troubleshooting time of the Electro-Hydraulic Actuators (EHA) installed in fly-by-wire aircrafts. The tester algorithm first evaluates EHA pressure and position sensor signals to emit either a pass or fail message. The evaluation is based on predefined ranges of EHA pressure and position signals. Next, the instrument tests the EHA response capability - a way of dynamic response evaluation, again issuing a suitable response. The instrument proved to be reliable after being successfully evaluated in laboratory and in a real model test airplane. © 2007 IEEE.