143 resultados para Piezoelectric Actuators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental and theoretical study of the ferroelectric and piezoelectric behavior of PZT doped with barium is presented. Ab initio perturbed ion calculations was carried out. The properties, such as remnant polarization, coercive field and the coupling factor of the PZT at constant sintering temperature was compared with the Zr4+/Ti4+ ions dislocation energy and the lattice interaction energy. An agreement between the experimental and theoretical results, with a decrease of the interaction energy and an inversion of the energy stability from tetragonal to rhombohedral phase was observed. (C) 1999 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a piezoelectric composite membranes were developed for charge generator to promoter bone regeneration on defects sites. Is known that the osteogenesis process is induced by interactions between biological mechanisms and electrical phenomena. The membranes were prepared by mixing Barium Titanate (BT) powders and PVDF-TrFE (PVDF:TrFE = 60:40 mol%) on dimethylformamide medium. This precursor solution was dried and crystallized at 100degreesC for 12 hours. Composites membranes were obtained by following methods: solvent casting (SC), spincoating (SP), solvent extraction by water addition (WS) and hot pressing (HP).The microstructural analysis performed by SEM showed connectivity type 3-0 and 3-1 with high homogeneity for samples of ceramic volume fraction major than 0.50. Powder agglomerates within the polymer matrix was evidenced were observed for composites with the BT volume fraction major than 40%. The composite of ceramic fraction of 0.55 presented the best values of remanent polarization (similar to33 muC/cm(2)), but the flexibility of these composites with the larger ceramic fraction was significantly affected.For in vivo evaluation PVDF-TrFE/BT 90/10 membranes with 3cm larger were longitudinally implanted under tibiae of male rabbit. After 21 days the animals were sacrificed. By histological analyses were observed neo formed bone with a high mitotic activity. In the interface bone-membrane was evidenced a pronounced callus formation. These results encourage further applications of these membranes in bone-repair process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bismuth titanate (Bi4Ti3O12, BIT) films were evaluated for use as lead-free piezoelectric thin films in micro-electromechanical systems. The films were grown by the polymeric precursor method on LaNiO3/SiO2/Si (1 0 0) (LNO), RuO2/SiO2/Si (1 0 0) (RuO2) and Pt/Ti/SiO2/Si (1 0 0) (Pt) bottom electrodes in a microwave furnace at 700 degrees C for 10 min. The domain structure was investigated by piezoresponse force microscopy (PFM). Although the converse piezoelectric coefficient, d(33), regardless of bottom electrode is around (similar to 40 pm/V), those over RuO2 and LNO exhibit better ferroelectric properties, higher remanent polarization (15 and 10 mu C/cm(2)), lower drive voltages (2.6 and 1.3 V) and are fatigue-free. The experimental results demonstrated that the combination of the polymeric precursor method assisted with a microwave furnace is a promising technique to obtain films with good qualities for applications in ferroelectric and piezoelectric devices. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites polymer-ceramic using castor oil-based polyurethane (PU) as non-ferroelectric matrix and Lead Zirconate Titanate (PZT) as ceramic powder have been prepared at thin films form by spin coating. The samples are poled by appropriated electric field to show piezo and pyroelectric activity. The pyroelectric coefficient p(T) at 343 K is obtained to be equal 5.8 X 10(-5) C m(-2) K-1 for a composite with 32 vol.% of ceramic. The figure of merit of this composite is six times higher than of PZT ceramic. The voltage responsivity of the pyroelectric is reduced when the thickness of the sample increases. It was used modulated white light as radiation source to excite the sensor film. The electric signal of the sensor decreases with the light modulation frequency by 1/f. (C) 1999 Elsevier B.V. S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pechini's method was used to prepare lead titanate zirconate with Zr/Ti ratio equal to 53/47. X-ray diffraction data revealed the presence of a rhombohedral phase, rich in zirconium, due to difference in carbonate stabilities, in PZT ceramics calcined at 600 degrees C. Infrared spectroscopy presented COO- bonds in the 1400 cm(-1) region, which disappeared after calcining at 700 degrees C. Seeds with rhombohedral (PZT 57/43) or tetragonal structure (PZT 45/55) were added to the precursor. The microstructure was differentially influenced by the nature of seed particles. Rhombohedral nuclei promoted preferential crystallization of lead zirconate. This heterogeneity directly reflected on values of k(p) and d(33). (C) 1999 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical data using ab initio perturbed ion calculation were compared with ferroelectric and piezoelectric experimental data of strontium doped PZT. Various concentrations of SrO in PZT at constant temperature and sintering time were carried out. Experimental results, such as the remanent polarization, P-R of 6.9-8.9 muC/Cm-2, the coercive field, E-C of 6.6-7.8 kVcm, and the planar coupling factor, Kp of 0.45-0.53, were compared with the energy of Zr4+ and Ti4+ ion dislocation and the lattice interaction energy which show that strontium increment in PZT alter the energies and increase the values of piezoelectric and ferroelectric variables. Calculations of lattice energy of the rhombohedral phase show that a phase non-stability is coincident with increasing experimental values of the P-R, E-C and Kp. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanochemical synthesis was applied to obtain nanocrystalline powders of composition Pb(Zr0.52Ti0.48)O-3 (PZT). Milling was performed in a planetary ball mill using vials and balls made of zirconia or steel-in order to investigate influence of milling media on the electrical properties of resulting ceramics. PZT ceramics showed high values for dielectric constant (epsilon(r)), reaching 970 at room temperature, as well as low dielectric loss (tandelta) under the optimal processing conditions. High values of remanent polarization (P-r) indicate high internal polarizability. The best samples showed piezoelectric strain constant d(33) = 347 pC/N and planar coupling factor k(P) = 0.44. Milling in ZrO2 medium prevents powder contamination and provides reproducibility of milling process. Also, PZT obtained from the powders milled in ZrO2 exhibited lower values of dielectric loss, in comparison with the PTZ obtained from the powders milled in Fe. This suggests that contamination of the powder with Fe could result in an increase of conductivity in final product. (C) 2004 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bismuth titanate (Bi4Ti3O12-BIT) films were evaluated for use as lead-free piezoelectric thin-films in micro-electromechanical systems. The films were grown by the polymeric precursor method on Pt/Ti/SiO2/Si (1 0 0) (Pt) bottom electrodes at 700 degrees C for 2 h in static air and oxygen atmospheres. The domain structure was investigated by piezoresponse force microscopy (PFM). Annealing in static air leads to better ferroelectric properties, higher remanent polarization, lower drive voltages and higher piezoelectric coefficient. on the other hand, oxygen atmosphere favors the imprint phenomenon and reduces the piezoelectric coefficient dramatically. Impedance data, represented by means of Nyquist diagrams, show a dramatic increase in the resistivity for the films annealed in static air atmopshere. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report a study of the physicochemical, dielectric and piezoelectric properties of anionic collagen and collagen-hydroxyapatite (HA) composites, considering the development of new biomaterials which have potential applications in support for cellular growth and in systems for bone regeneration. The piezoelectric strain tensor element d(14), the elastic constant s(55) and the dielectric permittivity 8(11), were measured for the anionic collagen and collagen-HA films. The thermal analysis shows that the denaturation endotherm is at 59.47 degreesC for the collagen sample. The collagen-HA composite film shows two transitions, at 48.9 and 80.65 degreesC. The X-ray diffraction pattern of the collagen film shows a broad band characteristic of an amorphous material. The main peaks associated to the crystalline HA is present in the sample of collagen-HA. In the collagen-HA composite, one can also notice the presence of other peaks with low intensities which is an indication of the formation of other crystalline phases of apatite. The scanning electron photomicrograph of anionic collagen membranes shows very thin bundles of collagen. The scanning electron photomicrography of collagen-HA film also show deposits of hydroxyapatite on the collagen fibers forming larger bundles and suggesting that a collagenous structure of reconstituted collagen fibers could act as nucleators for the formation of apatite crystal similar to those of bone. The piezoelectric strain tensor element d(14) was measured for the anionic collagen, with a value of 0.062 pC N-1, which is in good agreement compared with values reported in the literature obtained with other techniques. For the collagen-HA composite membranes, a slight decrease of the value of the piezoelectricity (0.041 pC N-1) was observed. The anionic collagen membranes present the highest density, dielectric permittivity and lowest frequency constant f.L. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deconvolution of the voltammograms of polypyrrole electrochemistry has proved to be possible through the electrochemical quartz crystal microbalance data using the F(dm/dQ) function. This deconvolution allows the evolution of the thickness of the polypyrrole films during their redox processes to be estimated and therefore, the mechanical contraction/decontraction of this polymer as a function of the ionic exchange processes can be evaluated. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gaussian basis sets (24s14p, 30s19p14d, and 33s21p14d for O (P-3), Ti (S-5), and Ba (S-1) atoms, respectively), are designed with the strategy of the Generator Coordinate Hartree-Fock method. The basis sets are then contracted to [6s4p], [10s5p4d], and [16s9p5d] to O, Ti, and Ba atoms, respectively, and used in calculations of total and orbital energies of (TiO+2)-Ti-1 and (BaO)-Ba-1 fragments for quality evaluation in molecular studies. For O atom, the [6s4p] basis set is enriched with d polarization function and used along with the [10s5p4d] and [16s9p5d] basis sets for the theoretical study of the piezoelectric effect of perovskite (BaTiO3). The results of this work evidence that the piezoelectric properties in BaTiO3 can be caused by electrostatic interactions. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.