60 resultados para Photoacoustic spectrometer
Resumo:
A method is proposed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by electrothermal atomic absorption spectrometry (ETAAS) using W-Rh permanent modifier together with Pd(NO3)(2) + Mg(NO3)(2) conventional modifier. The integrated platform of a transversely heated graphite atomizer (THGA) was treated with tungsten, followed by rhodium, forming a deposit containing 250 mug W + 200 mug Rh. A 500-muL, volume of fuel ethanol was diluted with 500 muL, of 0.14 mol L-1 HNO3 in an autosampler cup of the spectrometer. Then, 20 muL, of the diluted ethanol was introduced into the pretreated graphite platform followed by the introduction of 5 mug Pd(NO3)(2) + 3 mug Mg(NO3)(2). The injection of this modifier was required to improve arsenic and iron recoveries in fuel ethanol. Calibrations were carried out using multi-element reference solutions prepared in diluted ethanol (1 + 1, v/v) acidified to 0. 14 mol L-1 HNO3. The pyrolysis and atomization temperatures of the heating program were 1200degreesC and 2200degreesC, respectively, which were obtained with multielement reference solutions in acidic diluted ethanol (1 + 1, v/v; 0. 14 mol L-1 HNO3). The characteristic masses for the simultaneous determination in ethanol fuel were 78 pg Al, 33 pg As, 10 pg Cu, 14 pg Fe, 7 pg Mn, and 24 pg Ni. The lifetime of the pretreated tube was about 700 firings. The detection limits (D.L.) were 1.9 mug L-1 Al, 2.9 mug L-1 As, 0.57 mug L-1.Cu, 1.3 mug L-1 Fe, 0.40 mug L-1 Mn, and 1.3 mug L-1 Ni. The relative standard deviations (n = 12) were 4%, 4%, 3%, 1.5%, 1.2%, and 2.2% for Al, As, Cu, Fe, Mn, and Ni, respectively. The recoveries of Al, As, Cu, Fe, Mn, and Ni added to the fuel ethanol samples varied from 81% to 95%, 80% to 98%, 97% to 109%, 85% to 107%, 98% to 106% and 97% to 103%, respectively. Accuracy was checked for the Al, As, Cu, Fe, Mn, and Ni determination in 10 samples purchased at a local gas station in Araraquara-SP City, Brazil. A paired t-test showed that at the 95% confidence level the results were in agreement with those obtained by single-element ETAAS.
Resumo:
The AlMCM-41 material with Si/Al=50 was synthesized by hydrothermal method, using cethyltrimethylammonium as template. The protonic H-AlMCM-41 acid form was obtained by ion exchange with ammonium chloride solution and subsequent calcination. The characterization of the material by several techniques showed that a good-quality MCM-41 material was obtained. High-density polyethylene (HDPE) has been submitted to thermal degradation alone, and in presence of the exchanged H-AlMCM-41 catalyst at a concentration of 1: 1 in mass (H-AlMCM-41/HDPE). The reactor was connected on line to a gas chromatograph connected to a mass spectrometer. This process was evaluated by thermogravimetry (TG), from 350 to 600degreesC, under helium dynamic atmosphere, with heating rates of 5.0; 10.0 and 20.0 degreesC/min. From TG curves, the activation energy, calculated using a multiple heating rate integral kinetic method, decreased from 225.5 KJ.mol(-1), for the pure polymer (HDPE), to 184.7 KJ.mol(-1), in the presence of the catalyst (H-AlMCM-41/HDPE).
Resumo:
Spectroscopic properties of blends formed by bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) doped with Europium (III) acetylacetonate [Eu(acac)(3)], have been studied by photoacoustic spectroscopy (PAS) and photoluminescent (PL) spectroscopy. Emission and excitation spectra, excited state decay times, and quantum efficiency have been evaluated as well. PAS studies evidenced chemical interactions between the Europium complex and the PC/PMMA blend, which presented typical percolation threshold behavior regarding the Eu3+ content. PL spectra evidenced the photoluminescence of the Eu3+ incorporated into the blend. Photoluminescence property enhancement was observed for the composite in comparison with the precursor compound. Optimized emission quantum efficiency was observed for the 60/40 blend doped with 2% and 4% Europium (III) acetylacetonate. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Objective. To identify and quantify the camphorquinone (CQ) used in different brands of composite resins as a function of the shade analyzed.Materials and methods. Filtek Z250 A3 (FZA3), Filtek Z-250 Incisal (FZI), Pyramid Enamel A1 (PEA1), Pyramid Enamel Translucent (PET), Filtek Supreme A3E (FSA3) and Filtek Supreme GT (FSGT) were used. Five hundred milligrams of each resin were weighed and then dissolved in 1.0 ml of methanol. The samples were centrifuged to accelerate the sedimentation of the inorganic particles. 0.8 ml of the supernatant solution was collected with a pipette and assessed under gas chromatography coupled to the mass spectrometer (GC-MS). The results were compared to pure CQ solutions, used as a standard. Student's t-test, (p = 0.05) significant at the level of 5%, compared the results of each brand shade.Results. A smaller amount of camphorquinone was found in Filtek Z-250 (FZI) resin incisal shade when compared to (FZA3) A3 shade. on the other hand, Filtek Supreme resin featured a statistically larger camphorquinone amount in the incisal shade. in Pyramid Enamel resin camphorquinone was found only in shade Al, while the photoinitiator used in the Translucent shade was not identified.Significance. Based on the data obtained, it is possible to conclude that a single composite resin brand may feature differences in amount and type of photoinitiator used. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
High density poly(ethylene) has been submitted to thermal degradation alone, and in the presence of silicoaluminophosphate SAPO-37. The processes were carried out in a reactor connected on line to a gas chromatograph/mass spectrometer in order to analyze the evolved products. Polymer degradation was also evaluated by thermogravimetry, from room temperature until 800 degreesC, under nitrogen dynamic atmosphere, with multiple heating rates. From TG curves, the activation energy related to degradation process was calculated using the Flynn and Wall multiple heating rate kinetic model for pure polymer (PE) and for polymer in the presence of catalyst (PE/S37). SAPO-37 showed good selectivity for low molecular mass hydrocarbons in PE catalytic degradation.
Resumo:
We report here on the application of a compact ultraviolet spectrometer to measurement of NO2 emissions from sugar cane field burns in São Paulo, Brazil, the time-resolved NO2 emission from a 10 ha plot peaked at about 240 g (NO2) s(-1), and amounted to a total yield of approximately 50 kg of N, or about 0.5 g (N) m(-2). Emission of N as NOx (i.e., NO + NO2) was estimated at 2.5 g (N) in 2, equivalent to 30% of applied fertilizer nitrogen. The corresponding annual emission of NOx nitrogen from São Paulo State sugar cane burning was >45 Gg N. In contrast to mechanized harvesting, which does not require prior burning of the crop, manual harvesting with burning acts to recycle nitrogen into surface soils and ecosystems.
Resumo:
The feasibility of Portland cement analysis by introduction of slurries in an inductively coupled plasma optical emission spectrometer (ICP-OES) with axial viewing has been evaluated. After a fast manual grinding of the cement samples, owing to the pulverized state of this material, 0.1% m/v slurries were prepared in 1% v/v HCl. The calibration was performed adopting two strategies: one based on slurries prepared from different masses (50, 75, 100 and 125 mg) of a Portland cement standard reference material (NIST SRM 1881), and the other one based on aqueous reference solutions. A complete analysis of cement for major (Al, Ca, Fe, Mg and Si), minor and trace elements (Mn, P, S, Sr and Ti) was accomplished. Both strategies led to accurate results for commercial Portland cement samples, except for Si and Ti. for which the calibration with aqueous reference solutions resulted in low values. Applying a paired t-test it was shown that most results were in agreement at a 95% confidence level with a conventional fusion decomposition procedure. The ICP-OES with axial viewing and end-on gas configuration for removal of the recombination plasma zone was effective for cement slurry analysis without any undesirable particle deposition in the pre-optics interface and without severe spectral interferences. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Southwest region of the Bahia state in Brazil hosts the largest uranium reserve of the country (100 kton in uranium, only), plus the cities of Caetite, Lagoa Real and Igapora. In this work, aim was at the investigation of uranium burdens on residents of these cities by using teeth as bioindicators, as a contribution for possible radiation protection measures. Thus, a total of 41 human teeth were collected, plus 50 from an allegedly uranium free area (the control region). Concentrations of uranium in teeth from residents of 5- to 87-y old were determined by means of a high-resolution inductively coupled plasma mass spectrometer (ICP-MS). The highest uranium concentration in teeth was measured from samples belonging to residents of Caetite (median equal to 16 ppb). Assuming that the uranium concentrations in teeth and bones are similar within 10-20% (for children and young adults), it concluded that uranium body levels in residents of Caetite are at least one order of magnitude higher than the worldwide average. This finding led to conclude that daily ingestion of uranium, from food and water, is equally high.
Resumo:
An analytical procedure for direct introduction of biodiesel samples into an inductively coupled plasma mass spectrometer (ICP-MS) by using microemulsion for sample preparation was developed here. Cadmium, Co, Cu, Mn, Ni, Pb, Ti, and Zn were determined in biodiesel microemulsified samples prepared from different oleaginous sources (African palm, castor beans, palm, soybeans and an unknown oleaginous). Microemulsions were prepared using 0.25 mL Triton X-100, 0.25 mL 20% v v(-1) HNO(3), 0.50 mL biodiesel sample and 4.0 mL n-propanol. Argon-oxygen mixture was added to the plasma as auxiliary gas for correcting matrix effects caused by the high carbon load due to biodiesel microemulsions. The oxygen gas flow rate was set in 37.5 mL min(-1). The accuracy of the developed procedure was evaluated by applying addition-recovery experiments for biodiesel samples from different sources. Recoveries varied from 76.5 to 116.2% for all analytes but Zn in castor beans biodiesel sample (65.0 to 76.2%). Recoveries lower than 86.6% were obtained for palm biodiesel sample, probably due to matrix effects. Detection limits calculated by using oxygen in the composition of the auxiliary gas added to the plasma were higher than those calculated without using it, probably due to the highest formation of oxides. Despite oxides formation, best analytical performance was reached by using oxygen as auxiliary gas and by proper correction of transport interferences. The developed procedure based on microemulsion formation was suitable for direct introduction of biodiesel samples in ICP-MS. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This in vitro research verified the possibility of eliminating staining caused by coffee and red wine in five composite resins, after being submitted to thermal cycling. Thirty-six specimens were prepared and immersed in water at 37 degrees C for 24 hours. After polishing, specimen color was measured in a spectrophotometer Cintra 10 UV (Visible Spectrometer, GBC, Braeside, VIC, Australia). All specimens were submitted to thermal cycling at temperatures of 5 and 55 degrees C with a dwell time of 1 minute, for 1,000 cycles in a 75% ethanol/water solution. After thermal cycling, the specimens were immersed in water at 37 degrees C until 7 days had elapsed from the time the specimens were prepared. All specimens were then taken to the spectrophotometer for color measurement. The specimens were divided into three groups (N = 12): distilled water (control), coffee, and red wine. For the staining process to occur on only one surface, all the sides, except one, of the surfaces were isolated with white wax. The specimens were immersed in one of the solutions at 37 degrees C for 14 days. The specimens were dried and taken to the spectrophotometer for color measurement. After this, the specimens were submitted to 20 mu m wear three times, and the color was measured after each one of the wear procedures. Calculation of the color difference was made using CIEDE2000 formula. According to the methodology used in this research, it was concluded that the staining caused by coffee and red wine was superficial and one wear of 20 mu m was sufficient to remove the discoloration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The south region of São Paulo city hosts the Guarapiranga dam, responsible for water supply to 25% of the city population. Their surroundings have been subject to intense and irregular occupation by people from very low socioeconomics classes. Measurements undertaken on sediment and particulate materials in the dam revealed concentrations of lead. copper, zinc and cadmium above internationally accepted limits. Epidemiological and toxicological studies undertaken by the World Health Organization in individuals exhibiting lead concentrations in blood, near or below the maximum recommended (10 mu g dl(-1)), surprisingly revealed that toxic effects are more intense in individuals belonging to low socioeconomics classes. Motivated by these facts, we aimed at the investigation of chronic incorporation of lead. as well as the use of our BIOKINETICS code, which is based on an accepted ICRP biokinetics model for lead, in order to extrapolate the results from teeth to other organs. The focus of our data taking was children from poor families, living in a small, restrict and allegedly contaminated area in São Paulo city. Thus, a total of 74 human teeth were collected. The average concentration of lead in teeth of children 5 to 10 years old was determined by means of a high-resolution inductively coupled plasma mass spectrometer (ICP-MS). For standardization of the measurements, an animal bone certified material (H-Animal Bone), from the International Atomic Energy Agency, was analyzed. The amount of lead in children living in the surroundings of the dam, was approximately 40% higher than those from the control region, and the average lead concentration was equal to 1.3 mu g g(-1) approximately. Grouping the results in terms of gender, tooth type and condition, it was concluded that a carious molar of boys is a much more efficient contamination pathway for lead, resulting in concentrations 70% higher than in the control region. We also inferred the average concentrations of lead in other organs of these children, by making use of our BIOKINETIC code. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes two simple thermal methods for measuring the energy fluence in J/cm 2 from a diagnostic x-ray exposure. Both detectors absorb essentially 100% of the radiation and give a signal that is directly proportional to the energy fluence of the x-ray beam. One detector measures the thermal effect when a pulse of x rays is totally absorbed in the pyroelectric detector of lead-zirconium-titanate (PZT). The other detector measures the expansion of a gas surrounding a lead disk detector in a photoacoustic chamber. The increased pressure of the gas is transmitted through a 1-mm duct to a sensitive microphone. Both detectors have previously been used to measure the energy fluence rate of continuous x-ray beams in the same energy region using a chopped beam and a lock-in amplifier. Measurement of the energy fluence of a pulse of radiation eliminates the need for the beam chopper and lock-in amplifier and results in a simple, rugged, and inexpensive dosimeter. Either method can be combined with the area of the beam to give an estimate of the imparted energy to the patient from a diagnostic x-ray exposure.
Resumo:
The authors review the use of photoacoustic and pyroelectric radiation dosimeters. They compare the characteristics and results obtained with a photoacoustic radiation dosimeter (PARD) and a pyroelectric radiation dosimeter (PERD). The PARD and the PERD can be used to measure the energy fluence rate of continuous X-ray beams. In the same way, the single-pulse photoacoustic radiation dosimeter and the single-pulse pyroelectric radiation dosimeter (PPERD) were compared. They can measure the energy fluence of a single pulse of X-radiation. A theoretical model to explain the results obtained with the PPERD is presented and compared with experimental results.