112 resultados para Oven drying
Resumo:
The fate of three pesticides (vinclozolin, dimethoate, cyproconazole) in plums, from field treatment to the drying process, was studied. Only vinclozolin showed measurable residue concentrations at harvest, while dimethoate was completely degraded after two weeks and cyproconazole was present at negligible levels just after treatment. During the drying process into prunes, the residues were not reduced during the fruit washing stage, but the drying stage led to complete elimination of vinclozolin residues.
Resumo:
Fresh persimmon has a high moisture content (about 85% wet basis) making it highly perishable and requiring adequate drying conditions to obtain an acceptable dehydrated product. Drying kinetics of persimmon cv. Rama Forte was studied in a fixed bed dryer at temperatures ranging from 50 to 80 degreesC and air velocity of 0.8 m/s. Shrinkage during drying was described by a linear correlation with respect to water content. Evaluation of effective diffusivity as a function of moisture content, with undergoing shrinkage during drying was based on Fourier series solution of Fick's diffusion equation. Effective diffusivity values at moisture contents between 0.09 - 4.23 kg water/kg dry matter were found to be in the range of 2.6 x 10(-10) m(2)/s to 5.4 x 10(-10) m(2)/s, and its dependence on air drying temperature was represented by an Arrhenius type equation. Activation energy increased with decreasing water content in persimmons.
Resumo:
Oriented LiNbO3 thin films were prepared using a polymeric precursor solution deposited on (0001) sapphire substrate by spin coating and crystallized in a microwave oven. Crystallization of the films was carried out in a domestic microwave oven. The influence of this type of heat treatment on the film orientation was analyzed by X-ray diffraction and electron channeling patterns, which revealed epitaxial growth of films crystallized at 550 and 650 degreesC for 10 min. A microstructural study indicated that the films treated at temperatures below 600 degreesC were homogeneous and dense, and the optical properties confirmed the good quality of these films. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this article we investigate experimentally the potential of using pulsating flows for drying of food grains. A Rijke type oscillator with an electrical heater was used to dry batches of soybean grains. Drying temperatures were 60 degreesC. We observed a decrease on the drying time for pulsating flows when compared with the conventional non-pulsating regime. This decrease depended on sample initial moisture content and weight, and on final sample moisture content. (C) 2004 Elsevier B.V. Ltd.
Resumo:
In the present study. a spectrophotometric method for the determination of formaldehyde by using chromotropic acid was devised. in which the use of potentially hazardous and corrosive concentrated sulfuric acid was eliminated and advantageously C replaced by a mixture of H, concentrated H3PO4 and H2O2. The reaction between formaldehyde and chromotropic acid (CA) in a cone phosphoric acid medium was accelerate by irradiating the mixture with microwave energy for 35 s (1100 W), producing a violetred compound (lambda(max)=570 nm). Beer's Law is obeyed in a concentration range of 0.8-4.8 mg 1(-1) of formaldehyde with a good correlation coefficient (r = 0.9968). The proposed method was applied in the analysis of formaldehyde in commercial disinfectants. Recoveries were within 98.0-100.4%, with standard deviations ranging from 0.03 to 0.13%. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
The thermal properties of plums (Prunus domestica) and prunes were investigated in the moisture content of 14.2-80.4% (wet basis) near room temperature (approximately 28 degrees C). The apparent density of the fruits increased from 1042.9 to 1460.0 kg/m(3), and the bulk density increased from 706.6 to 897.5 kg/m(3) as the plums were dried, following classical empirical models as a function of moisture content. It was found that specific heat, effective thermal diffusivity, and effective thermal conductivity of the prunes increased with the moisture content of the samples, which can be represented by using different empirical models.
Resumo:
Degradation kinetics of food constituents may be related to the matrix molecular mobility by glass transition temperature. Our objective was to test this approach to describe ascorbic acid degradation during drying of persimmons in an automatically controlled tray dryer with temperatures (40 to 70 degrees C) and air velocities (0.8 to 2.0 m/s) varying according a second order central composite design. The Williams-Landel-Ferry model was satisfactorily adjusted to degradation curves for both control strategies adopted-constant air temperature and temperature fixed inside the fruit. Degradation rates were higher at higher drying temperatures, independent of the necessary time to attain the desired moisture content.
Resumo:
Rheological properties of rehydrated prunes were obtained applying compression-relaxation tests by using a Texture Analyzer TAXT2i. A mathematical development was adopted to determine the stress and area, along the deformation. Experimental data of stress versus time was fitted by using three different rheological models: generalized Maxwell, Normand & Peleg and Maxwell. Results showed that generalized Maxwell model can be used to describe the viscoelastic behavior of the samples. The rheological parameters obtained indicated that prunes exhibited elastic behavior more pronounced at low moisture content and drying air temperature. At high moisture content and temperature the sample became a more viscous and less rigid.
Resumo:
Ferroelectric SrBi2Nb2O9 (SBN) thin films were prepared by the polymeric precursors method and deposited by spin coating onto Pt/Ti/SiO2/Si substrate and crystallized using a domestic microwave oven. It was studied the influence of the heat flux direction and the duration of the thermal treatment on the films crystallization. An element with high dielectric loss, a SiC susceptor, was used to absorb the microwave energy and transfers the heat to the film. Influence of the susceptor position to the sample crystallization was verified, the susceptor was, placed or below the substrate or above the film. The SBN perovskite phase was observed after a thermal treatment at 700 degreesC for 10 min when the susceptor was placed below the substrate and for 30 min when the susceptor was placed above the film. Electrical measurements revealed that the film crystallized at 700 degreesC for 10 min, with the susceptor placed below the film, presented dielectric constant, dielectric loss, remanent polarization and coercive field of, 67, 0.011, 4.2 muC/cm(2) and 27.5 kV/cm, respectively. When the films were crystallized at 700 degreesC for 30 min, with the susceptor placed above the film, the dielectric constant was 115 and the dissipation factor was around of 0.033, remanent polarization and coercive field were 10.8 muC/cm(2) and 170 kV/cm, respectively. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We present a fast procedure for scanning electron microscopy (SEM) analysis in which hexamethyldisilazane (HMDS) solvent, instead of the critical point drying, is used to remove liquids from a microbiological specimen. The results indicate that the HMDS solvent is suitable for drying samples of anaerobic cells for examination by SEM and does not cause cell structure disruption.
Resumo:
New silica-polypropyleneglycol ormosils (organically modified silicates) with covalent bends between the organic (polymer) and inorganic (silica) phases have been prepared by the sol-gel process. Their structural evolution during sol formation, sol-gel transition, gel aging and drying has been studied in situ by small-angle X-ray scattering (SAXS). The experimental SAXS curves corresponding to sols and gels exhibit features expected from fractal objects. Clusters of size around 55 Angstrom with an initial fractal dimension D = 2.4 are formed in the sol. They are constituted of small primary silica particles chemically crosslinked at the end of the polymer chains. A strong liquid-like spatial correlation between the silica particles develops during drying due to the shrinkage of the polymeric network induced by water and ethanol evaporation. The continuous increase in SAXS intensity during drying, while the interparticle distance remains constant, is a consequence of the progressive growth of the dry fraction of the total volume. After drying, the gel structure consists of a rather compact arrangement of silica particles embedded in the polypropyleneglycol matrix.
Resumo:
PbZr0.3Ti0.7O3 (PZT) films were produced by polymeric precursor route and deposited by spin-coater technique on Pt(111)/Ti/SiO2/Si(100) substrates. The films were heat-treated using different furnaces: (a) a conventional furnace, at 700 degrees C; and (b) a domestic microwave oven, at 600 degrees C. The X-ray patterns revealed that both films are single phase and reflections were identified as belongs to the PZT phase. The intensity of these reflections showed a (111), (001) and (100) preferred orientation. Morphological and electrical characterizations showed that all samples present a rather different microstructure and both with high spontaneous polarization.
SILICA MORPHOLOGY CHARACTERIZED BY SEM - THE EFFECTS OF THE SOLVENT TREATMENT AND THE DRYING PROCESS
Resumo:
Scanning electron microscopy (SEM) was used to investigated the effects of volatile solvents (such as water, propanone, ethanol, methanol or ethyl ether), treatment and drying processes, microwave ovens, drying ovens, and vacuum desiccators or freeze driers, on silica morphology. Silica gel was obtained from diluted sodium silicate (1:5 w/w SiO2:H2O). The results showed that the drying process based on freeze drying is more efficient for structural conservation of the precipitate. Treatment with volatile solvents does not change the shape of the aggregates, but has an important role in the determination of aggregate surface roughness.
Resumo:
SrBi2Ta2O9 thin films, produced by the polymeric precursor method, were crystallized at low temperature using a domestic microwave oven. A SiC susceptor were used to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films thus obtained are crack-free, well-adhered, and fully crystallized, even when treated at 600 degreesC for 10 min. The microstructure displayed a polycrystalline nature with an elongate grain size comparable to the films obtained by the conventional treatment. The dielectric constant values are 240, 159 and 67, for the films treated at 600 degreesC, 650 degreesC and 700 degreesC, respectively, when the films are placed directly on the SiC susceptor. Electrical measurements revealed that the increase of the temperature treatment to 700 degreesC causes a complete loss of ferroelectricity due to degradation of the bottom interface. A 4 nun-ceramic wool put between the susceptor and the substrate minimizes the interface degradation leading to a dielectric constant, a dielectric loss, and a remnant polarization (2P(r)) of 181 muC/cm(2), 0.032 muC/cm(2), and 12.8 muC/cm(2), respectively, for a film treated at 750 degreesC for 20 min. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Drying kinetics of tomato was studied by using heat pump dryer (HPD) and electric resistance dryers with parallel and crossed airflow. The performance of both systems was evaluated and compared and the influence of temperature, air velocity, and tomato type on the drying kinetics was analyzed. The use of HPD showed to be adequate in the drying process of tomatoes, mainly in relation to the conversion rate of electric energy into thermal energy. The heat pump effective coefficient of performance (COPHT,EF) was between 2.56 and 2.68, with an energy economy of about 40% when compared to the drying system with electric resistance. The Page model could be used to predict drying time of tomato and statistical analysis showed that the model parameters were mainly affected by drying temperature.