90 resultados para Noradrenergic neurotransmission


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are conflicting results on the function of 5-HT in anxiety and depression. To reconcile this evidence, Deakin and Graeff have suggested that the ascending 5-HT pathway that originates in the dorsal raphe nucleus (DRN) and innervates the amygdala and frontal cortex facilitates conditioned fear, while the DRN-periventricular pathway innervating the periventricular and periaqueductal gray matter inhibits inborn fight/flight reactions to impending danger, pain, or asphyxia. To study the role of the DRN 5-HT system in anxiety, we microinjected 8-OH-DPAT into the DRN to inhibit 5 HT release. This treatment impaired inhibitory avoidance (conditioned fear) without affecting one-way escape (unconditioned fear) in the elevated T-maze, a new animal model of anxiety. We also applied three drug treatments that increase 5-HT release from DRN terminals: 1) intra-DRN microinjection of the benzodiazepine inverse agonist FG 4172, 2) intra-DRN microinjection of the excitatory amino acid kainic acid, and 3) intraperitoneal injection of the 5-HT releaser and uptake blocker D-fenfluramine. All treatments enhanced inhibitory avoidance in the T-maze. D-Fenfluramine and intra-DRN kainate also decreased one-way escape. In healthy volunteers, D-fenfluramine and the 5-HT agonist mCPP (mainly 5-HT2C) increased, while the antagonists ritanserin (5-HT2A/(2C)) and SR 46349B (5-HT2A) decreased skin conductance responses to an aversively conditioned stimulus (tone). In addition, D-fenfluramine decreased, whereas ritanserin increased subjective anxiety induced by simulated public speaking, thought to represent unconditioned anxiety. Overall, these results are compatible with the above hypothesis. Deakin and Graeff have suggested that the pathway connecting the median raphe nucleus (MRN) to the dorsal hippocampus promotes resistance to chronic, unavoidable stress. In the present study, we found that 24 h after electrolytic lesion of the rat MRN glandular gastric ulcers occurred, and the immune response to the mitogen concanavalin A was depressed. Seven days after the same lesion, the ulcerogenic effect of restraint was enhanced. Microinjection of 8-OH-DPAT, the nonselective agonist 5-MeO-DMT, or the 5-HT uptake inhibitor zimelidine into the dorsal hippocampus immediately after 2 h of restraint reversed the deficits of open arm exploration in the elevated plus-maze, measured 24 h after restraint. The effect of the two last drugs was antagonized by WAY-100135, a selective 5-HT1A receptor antagonist. These results are compatible with the hypothesis that the MRN-dorsal hippocampus 5-HT system attenuates stress by facilitation of hippocampal 5-HT1A-mediated neurotransmission. Clinical implications of these results are discussed, especially with regard to panic disorder and depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this-study we investigated the influence of electrolytic lesion of the lateral hypothalamus (LH) on the water and salt appetite, and the natriuretic, diuretic and cardiovascular effects induced by angiotensinergic, cholinergic and noradrenergic stimulation of the median preoptic nucleus (MnPO) in rats. Male Holtzman rats were implanted with a cannula into the MnPO. Other groups of sham- and LH-lesioned rats received a stainless steel cannula implanted into the MnPO. ANGII injection into the MnPO induced water and sodium intake, and natriuretic, diuretic, presser and tachycardic responses. Carbachol induced water intake, and natriuretic, presser and bradycardic responses, whereas noradrenaline increased urine, sodium excretion and blood pressure, and induced bradycardia. In rats submitted to LH-lesion only, water and sodium intake was reduced compared with sham rats. LH lesion also reduced the sodium ingestion induced by ANGII (12 ng) into the MnPO. In LH-lesioned rats, the dipsogenic, diuretic and presser responses induced by ANGII (12 ng), carbachol (2 nmol) and noradrenaline (20 nmol) injection into the MnPO were reduced. The same occurred with sodium excretion when carbachol (2 nmol) and noradrenaline (20 nmol) were injected into the MnPO of LH-lesioned rats, whereas ANGII(12 ng) induced an increase in sodium excretion. These data show that electrolytic lesion of the LH reduces fluid and sodium intake, and presser responses to angiotensinergic, cholinergic and noradrenergic activation of the MnPO. LH involvement with MnPO excitatory and inhibitory mechanisms related to water and sodium intake, sodium excretion and cardiovascular control is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effect of losartan (DUP-753) on the dipsogenic responses produced by intracerebroventricular (icv) injection of noradrenaline (40 nmol/mu l) and angiotensin II (ANG II) (2 ng/mu l) in male Holtzman rats weighing 250-300 g. The effect of DUP-753 was also studied in animals submitted to water deprivation for 30 h. After control injections of isotonic saline (0.15 M NaCl, 1 mu l) into the lateral ventricle (LV) the water intake was 0.2 +/- 0.01 ml/h. DUP-753 (50 nmol/mu l) when injected alone into the LV of satiated animals had no significant effect on drinking (0.4 +/- 0.02 ml/h) (N = 8). DUP-753 (50 nmol/mu l) injected into the LV prior to noradrenaline reduced the water intake from 2.4 +/- 0.8 to 0.8 +/- 0.2 ml/h (N = 8). The water intake induced by injection of ANG II and water deprivation was also reduced from 9.2 +/- 1.4 and 12.7 +/- 1.4 ml/h to 0.8 +/- 0.2 and 1.7 +/- 0.3 ml/h (N = 6 and N = 8), respectively. These data indicate a correlation between noradrenergic pathways and angiotensinergic receptors and lead us to conclude that noradrenaline-induced water intake may be due to the release of ANG II by the brain. The finding that water intake was reduced by DUP-753 in water-deprived animals suggests that dehydration releases ANG II, and that AT(1) receptors of the brain play an important role in the regulation of water intake induced by deprivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated the participation of adrenergic neurotransmission in angiotensin II- (ANGII)-induced water intake and urinary electrolyte excretion by means of injection of the alpha(1)-, alpha(2)-, and beta-adrenoceptor antagonists and ANGII into the medial preoptic area (MPOA) in rats. Prazosin (an alpha(1)-adrenergic antagonist) antagonized the water ingestion, Na+, K+ and urine excretion induced by ANGII, whereas yohimbine (an alpha(2)-adrenergic antagonist) enhanced the Na+, K+ and urine excretion induced by ANGII. Propranolol (a nonselective beta-adrenoceptor blocker) antagonized the water ingestion and enhanced the Na+ and urine excretion induced by ANGII. Previous treatment with prazosin reduced the presser responses to ANGII, whereas yohimbine had opposite effects. Previous injection of propranolol produced no effects in the presser responses to ANGII. These results suggest that the adrenergic neurotransmission in the MPOA may actively participate in ANGII-induced dipsogenesis, natriuresis, kaliuresis and diuresis in a process that involves alpha(1)-, alpha(2)-, and beta-adrenoceptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was undertaken to look for the effect of chloroethylclonidine (CEC) on prejunctional alpha-2 autoreceptors of the canine saphenous vein. The effect was tested on tritium overflow evoked by electrical stimulation from tissues preloaded with 0.2 μM 3H- norepinephrine. Yohimbine (3-300 nM) and CEC (1-125 μM) increased and UK- 14,304 reduced the overflow of tritium evoked by 300 pulses (1 Hz). The maximal increase of tritium overflow caused by yohimbine was much higher than that caused by CEC: 3.82 and 1.74 times, respectively. CEC (5 μM) abolished both the inhibition caused by UK-14,304 and the enhancement of tritium overflow caused by yohimbine. However, when CEC was added after yohimbine, it reduced the electrically evoked overflow of tritium, the maximal effect being a reduction of tritium overflow by 35%. Prazosin (1-100 nM) did not change either the inhibitory effect of UK-14,304 or the facilitatory effect of CEC. These results suggest that CEC acts on two different subtypes of prejunctional alpha-2 autoreceptors; on one of them it acts as an antagonist and increases the electrically evoked overflow of tritium (and inhibits both the effect of UK-14,304 and yohimbine); on the other it acts as an agonist and reduces the electrically evoked overflow of tritium. Alternatively, one can admit that CEC is able to inhibit alpha-2 autoreceptors, which causes an increase of the transmitter release, and to activate a nonadrenergic inhibitory receptor thus causing a reduction of the transmitter release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Objectives. The analgesic actions of nonsteroidal anti-inflammatory drugs (NSAID) result from the inhibition of the peripheral synthesis of prostaglandins. In spite of the emphasis on the peripheral action, several studies have shown the potential central action of such drugs. In rats, NSAID doses insufficient to block pain when systemically administered were effective when intrathecally injected. This effect could be mediated by interaction with descending serotoninergic ways together with neurotransmission modulation of glycine or N-methyl-D-aspartate receptors. Our goal was to study the effect of different tenoxican doses in the histology of dogs spinal cord and meninges. Methods. Thirty two dogs (7 to 17 kg) were randomly distributed in four groups: G1 - Control with distilled water (DW); G2 - 2 mg tenoxican diluted in DW; G3 - 4 mg tenoxican diluted in DW; G4 - 10 mg tenoxican diluted in DW in a constant volume of 1 ml. Anesthesia was induced with etomidate and fentanyl and dural puncture was performed with a 25G spinal needle in interspace L6-7. Animals were observed for 72 hours and subsequently euthanized by electrocution. Lumbar and sacral spinal cord segments were removed for further histologic examination. Results. All animals were clinically normal during the observation period and there has been no histologic alteration of the nervous system and meninges. Conclusions. In our experimental model intrathecal tenoxican doses up to 10 mg have not triggered nervous tissue or meningeal injuries in dogs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of the effect of ethanol on human visual evoked potentials are rare and usually involve chronic alcoholic patients. The effect of acute ethanol ingestion has seldom been investigated. We have studied the effect of acute alcoholic poisoning on pattern-reversal visual evoked potentials (PR-VEP) and flash light visual evoked potentials (F-VEP) in 20 normal volunteers. We observed different effects with ethanol: statistically significant prolonged latencies of F-VEP after ingestion, and no significant differences in the latencies of the PR-VEP components. We hypothesize a selective ethanol effect on the afferent transmission of rods, mainly dependent on GABA and glutamatergic neurotransmission, influencing F-VEP latencies, and no effect on cone afferent transmission, as alcohol doesn't influence PR-VEP latencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to compare the effects of barbiturate, benzodiazepine and ketamine on flash-evoked potentials (F-VEP) in adult rabbits. A total of 36 animals were studied, 16 after pentobarbital endovenous (EV) inffusion, 10 after midazolam EV administration, and 10 after ketamine EV inffusion. Pentobarbital induced triphasic F-VEP, first negative (N1), secondpositive (P1), third negative (N2) waves, all with large amplitudes and P1 with well-defined morphology. Mean P1 latency was 33ms. Midazolam induced similar but less defind triphasic waves, with mean latency of 27ms. Ketamine induced poliphasic and poorly defined F-VEP, with mean first positive (P1) latency of 27ms. Statistical analysis showed more elongated latency for the pentobarbital group than the midazolam and ketamine groups. The results of this study suggest that the pharmacological effects of pentobarbital and midazolam on GABA neurotransmission in rabbit visual cortex may be different; another neurotransmission system, possibly cholinergic, may be involved. The ketamine effect seen in rabbit visual cortex seems to be different from pentobarbital and midazolam.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuromodulatory effect of nitric oxide (NO) on glutamatergic transmission within the NTS related to cardiovascular regulation has been widely investigated. Activation of glutamatergic receptors in the NTS stimulates the production and release of NO and other nitrosyl substances with neurotransmitter/neuromodulator properties. The presence of NOS, including the protein nNOS and its mRNA in vagal afferent terminals in the NTS and nodose ganglion cells suggest that NO can act on glutamatergic transmission. We previously reported that iontophoresis of L-NAME on NTS neurons receiving vagal afferent inputs significantly decreased the number of action potentials evoked by iontophoretic application of AMPA. In addition, iontophoresis of the NO donor papaNONOate enhanced spontaneous discharge and the number of action potentials elicited by AMPA, suggesting that NO could be facilitating AMPA-mediated neuronal transmission within the NTS. Furthermore, the changes in renal sympathetic discharge during activation of baroreceptors and cardiopulmonary receptors involve activation of AMPA and NMDA receptors in the NTS and these responses are attenuated by microinjection of L-NAME in the NTS of conscious and anesthetized rats. Cardiovascular responses elicited by application of NO in the NTS are closely similar to those obtained after activation of vagal afferent inputs, and L-glutamate is the main neurotransmitter of vagal afferent fibers. In this review we discuss the possible neuromodulatory mechanisms of central produced/released NO on glutamatergic transmission within the NTS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc (Zn ++) has been shown as an important physiological inhibitor of pituitary PRL release, and Zn ++ and PRL could be involved in a negative feedback regulatory loop. However, this inhibitory effect has not been detected in humans with regard to thyrotropin releasing hormone (TRH), dopamine (DA) and histamine (HA) neurotransmitters. In order to investigate this topic, Zn ++ was acutely and chronically administered to five healthy men to observe the probable inhibitory effect on PRL release during insulin-induced hypoglycemia. The positive PRL response to hypoglycemia has generally been considered to be mediated via the hypothalamus by adrenergic, serotoninergic, histaminergic, opioid-peptidergic and TRH neurotransmitters. The results showed that Zn ++ was not able to inhibit the PRL release during insulin-induced hypoglycemia. Under these conditions, Zn ++ does not block hypothalamic neurotransmitters stimulated by hypoglycemia, thus excluding its clinical application in human beings. On the other hand, the effect of acute stress, such as hypoglycemia, on the serum Zn ++ profile was not observed. ©2006 Dustri-Verlag Dr. K. Feistle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular neurobiology has provided an explanation of mechanisms supporting mental functions as learning, memory, emotion and consciousness. However, an explanatory gap remains between two levels of description: molecular mechanisms determining cellular and tissue functions, and cognitive functions. In this paper we review molecular and cellular mechanisms that determine brain activity, and then hypothetize about their relation with cognition and consciousness. The brain is conceived of as a dynamic system that exchanges information with the whole body and the environment. Three explanatory hypotheses are presented, stating that: a) brain tissue function is coordinated by macromolecules controlling ion movements, b) structured (amplitude, frequency and phase-modulated) local field potentials generated by organized ionic movement embody cognitive information patterns, and c) conscious episodes are constructed by a large-scale mechanism that uses oscillatory synchrony to integrate local field patterns. © by São Paulo State University.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)