106 resultados para Nonlinear integral equations.
Resumo:
The result that we treat in this article allows to the utilization of classic tools of convex analysis in the study of optimality conditions in the optimal control convex process for a Volterra-Stietjes linear integral equation in the Banach space G([a, b],X) of the regulated functions in [a, b], that is, the functions f : [a, 6] → X that have only descontinuity of first kind, in Dushnik (or interior) sense, and with an equality linear restriction. In this work we introduce a convex functional Lβf(x) of Nemytskii type, and we present conditions for its lower-semicontinuity. As consequence, Weierstrass Theorem garantees (under compacity conditions) the existence of solution to the problem min{Lβf(x)}. © 2009 Academic Publications.
Resumo:
A challenge in mesonic three-body decays of heavy mesons is to quantify the contribution of re-scattering between the final mesons. D decays have the unique feature that make them a key to light meson spectroscopy, in particular to access the Kn S-wave phase-shifts. We built a relativis-tic three-body model for the final state interaction in D+ → K -π+π+ decay based on the ladder approximation of the Bethe-Salpeter equation projected on the light-front. The decay amplitude is separated in a smooth term, given by the direct partonic decay amplitude, and a three-body fully interacting contribution, that is factorized in the standard two-meson resonant amplitude times a reduced complex amplitude that carries the effect of the three-body rescattering mechanism. The off-shell reduced amplitude is a solution of an inhomogeneous Faddeev type three-dimensional integral equation, that includes only isospin 1/2 K -π+ interaction in the S-wave channel. The elastic K-π+ scattering amplitude is parameterized according to the LASS data[1]. The integral equation is solved numerically and preliminary results are presented and compared to the experimental data from the E791 Collaboration[2, 3] and FOCUS Collaboration[4, 5].
Resumo:
The aluminum alloy 2524 (Al-Cu-Mg) was developed during the 90s mainly to be employed in aircraft fuselage panels, replacing the standard Al 2024. In the present analysis the fatigue crack growth (FCG) behavior of 2524-T3 was investigated, regarding the influence of three parameters: load ratio, pre strain and crack plane orientation of the material. The pre strain of aluminum alloys is usually performed in order to obtain a more homogeneous precipitates distribution, accompanied by an increase in the yield strength. In this work, it was evaluated the resistance of Al 2524-T3 sheet samples to the fatigue crack growth, having L-T and T-L crack orientations. FCG tests were performed under constant amplitude loading at three distinct positive load ratios. The three material conditions were tested: as received(AR), pre strained longitudinally (SL) and transversally (ST) in relation to rolling direction. In order to describe FCG behavior, two-parameter kinetic equations were compared: a Paris-type potential model and a new exponential equation introduced in a previous work conducted by our research group. It was observed that the exponential model, which takes into account the deviations from linearity presented by da/dN versus AK data, describes more adequately the FCG behavior of Al 224-T3 in relation to load ratio, pre strain effects and crack plane orientation. © 2011 Published by Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this study, the flocculation process in continuous systems with chambers in series was analyzed using the classical kinetic model of aggregation and break-up proposed by Argaman and Kaufman, which incorporates two main parameters: K (a) and K (b). Typical values for these parameters were used, i. e., K (a) = 3.68 x 10(-5)-1.83 x 10(-4) and K (b) = 1.83 x 10(-7)-2.30 x 10(-7) s(-1). The analysis consisted of performing simulations of system behavior under different operating conditions, including variations in the number of chambers used and the utilization of fixed or scaled velocity gradients in the units. The response variable analyzed in all simulations was the total retention time necessary to achieve a given flocculation efficiency, which was determined by means of conventional solution methods of nonlinear algebraic equations, corresponding to the material balances on the system. Values for the number of chambers ranging from 1 to 5, velocity gradients of 20-60 s(-1) and flocculation efficiencies of 50-90 % were adopted.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Pós-graduação em Física - FEG
Resumo:
Through deductions and formulations of the equations governing the behavior of plates elastic and thin based Kirchhoff theory, it is evident that it is justifiable to the complication of the numerical methods considering the complexity of the equations that describe the physical behavior of these elements and obtaining analytical solutions for specific situations. This study is directed to the application of the numerical method which is based on discretizations to the simplest elements which results in the reduction of data to be processed from. The numerical method in question is the Boundary Element Methods (BEM), as the name suggests, the discretizations are only the edges of the elements. The BEM converts the complex integral equations, in sums of functions that reduce the unknowns at the nodes that define the ends of discrete elements, obtaining internal values to elements using interpolation functions. Confirming the need and usefulness of the BEM, apply, then the foundations necessary to the specific cases of Civil Engineering where traditional methods do not provide the desired support, leaving in question the security situations and economics of the projects
Resumo:
Our purpose is to show the effects in the predator-prey trajectories due to parameter temporal perturbations and/or inclusion of capacitive terms in the Lotka Volterra Model. An introduction to the Lotka Volterra Model (chapter 2) required a brief review of nonlinear differential equations and stability analysis (chapter 1) , for a better understanding of our work. In the following chapters we display in sequence our results and discussion for the randomic pertubation case (chapter 3); periodic perturbation (chapter 4) and inclusion of capacitive terms (chapter 5). Finally (chapter 6) we synthesize our result
Resumo:
Pós-graduação em Física - FEG