122 resultados para Nonlinear algebraic systems
Resumo:
An efficient heuristic algorithm is presented in this work in order to solve the optimal capacitor placement problem in radial distribution systems. The proposal uses the solution from the mathematical model after relaxing the integrality of the discrete variables as a strategy to identify the most attractive bus to add capacitors to each step of the heuristic algorithm. The relaxed mathematical model is a nonlinear programming problem and is solved using a specialized interior point method, The algorithm still incorporates an additional strategy of local search that enables the finding of a group of quality solutions after small alterations in the optimization strategy. Proposed solution methodology has been implemented and tested in known electric systems getting a satisfactory outcome compared with metaheuristic methods.The tests carried out in electric systems known in specialized literature reveal the satisfactory outcome of the proposed algorithm compared with metaheuristic methods. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a methodology to achieve integrated planning and projects for secondary distribution circuits. The planning model is formulated as a mixed integer nonlinear programming problem (MINLP). In order to resolve this problem, a tabu search (TS) algorithm is used, with a neighborhood structure developed to explore the physical characteristics of specific geographies included in the planning and expansion of secondary networks, thus obtaining effective solutions as well as low operating costs and investments. The project stage of secondary circuits consists of calculating the mechanical efforts to determine the support structures of the primary and secondary distribution systems and determining the types of structures that should be used in the system according to topological and electrical parameters of the network and, therefore, accurately assessing the costs involved in the construction and/or reform of secondary systems. A constructive heuristic based on information of the electrical and topological conditions between the medium voltage and low voltage systems is used to connect the primary systems and secondary circuits. The results obtained from planning and design simulations of a real secondary system of electric energy distribution are presented.
Resumo:
A procedure for calculation of refrigerant mass flow rate is implemented in the distributed numerical model to simulate the flow in finned-tube coil dry-expansion evaporators, usually found in refrigeration and air-conditioning systems. Two-phase refrigerant flow inside the tubes is assumed to be one-dimensional, unsteady, and homogeneous. In themodel the effects of refrigerant pressure drop and the moisture condensation from the air flowing over the external surface of the tubes are considered. The results obtained are the distributions of refrigerant velocity, temperature and void fraction, tube-wall temperature, air temperature, and absolute humidity. The finite volume method is used to discretize the governing equations. Additionally, given the operation conditions and the geometric parameters, the model allows the calculation of the refrigerant mass flow rate. The value of mass flow rate is computed using the process of parameter estimation with the minimization method of Levenberg-Marquardt minimization. In order to validate the developed model, the obtained results using HFC-134a as a refrigerant are compared with available data from the literature.
Resumo:
This article concerns the free vibration of a single-degree-of-freedom (SDOF) system with three types of nonlinear damping. One system considered is where the spring and the damper are connected to the mass so that they are orthogonal, and the vibration is in the direction of the spring. It is shown that, provided the displacement is small, this system behaves in a similar way to the conventional SDOF system with cubic damping, in which the spring and the damper are connected so they act in the same direction. For completeness, these systems are compared with a conventional SDOF system with quadratic damping. By transforming all the equations of motion of the systems so that the damping force is proportional to the product of a displacement dependent term and velocity, then all the systems can be directly compared. It is seen that the system with cubic damping is worse than that with quadratic damping for the attenuation of free vibration. [DOI: 10.1115/1.4005010]
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Hill's equations-even in the linear original version are a describer of phenomenon having chaotic flavor, giving sometimes very unusual situations. The theory of the so called intervals of instability in the equation provides the precise description for most of these phenomena. Considerations on nonlinearities into the Hill's equation is a quite recent task. The linearized version for almost of these systems it reduces to the Hill's classical linear one. In this paper, some indicative facts are pointed out on the possibility of having the linear system stabilizable and/or exactly controllable. As consequence of such an approach we get results having strong classical aspects, like the one talking about location of parameters in intervals of stability. A result for nonlinear proper periodic controls, is considered too. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Dynamics and stability of solitons in two-dimensional (2D) Bose-Einstein condensates (BEC), with one-dimensional (1D) conservative plus dissipative nonlinear optical lattices, are investigated. In the case of focusing media (with attractive atomic systems), the collapse of the wave packet is arrested by the dissipative periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in focusing 2D media with 1D periodic nonlinearity. In the defocusing media (repulsive BEC case) with harmonic trap in one direction and nonlinear optical lattice in the other direction, the stable soliton can exist. Variational approach simulations are confirmed by full numerical results for the 2D Gross-Pitaevskii equation.
Resumo:
Considering the static solutions of the D-dimensional nonlinear Schrodinger equation with trap and attractive two-body interactions, the existence of stable solutions is limited to a maximum critical number of particles, when D greater than or equal to 2. In case D = 2, we compare the variational approach with the exact numerical calculations. We show that, the addition of a positive three-body interaction allows stable solutions beyond the critical number. In this case, we also introduce a dynamical analysis of the conditions for the collapse. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)