143 resultados para Metabolite
Resumo:
The glycerophosphate oxidase is a flavoprotein responsible for the catalysis of the oxidation of the glycerophosphate to dihydroxyacetone phosphate, through the reduction of the oxygen to hydrogen peroxide. The glycerophosphate oxidase from baker's yeast was specific for L-alpha-glycerol phosphate. It was estimated by monitoring the consumption of oxygen with an oxygraph. An increase of 32% in consumption of oxygen was obtained when the enzyme was concentrated 16-fold. The assay of enzyme was determined by the peroxidase chromogen method followed at 500 nm. The procedure for the standardization of the activity of the glycerophosphate oxidase from baker's yeast was accomplished, and the pH and temperature stability showed that the enzyme presented a high stability at pH 8.0, and the thermal stability was maintained up to 60 degrees C during I h. Such method allowed quantifying in the range 92-230 mM of glycerol phosphate, an important intermediate metabolite from lipid biosynthesis and glycolytic routes. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A critical revision of literature as regards to the drug stability in the presence of surfactants were realized. The functional groups envolved in the drug decomposition were used to the development of the discussion. The analysis indicated that the detergent effect can be used to control the rates and mechanisms of drug decomposition and to obtain specific information about the drug reactivity in the environment of pharmacological action.
Resumo:
The effect of nickel from soluble NiCl2 on Cu-Zn superoxide dismutase (SOD) activity, as well as on rate of nitro blue tetrazolium reduction, was studied in vitro since lipid peroxidation has been implicated in cell damage by nickel insoluble compounds, whose toxicity and carcinogenicity are well established. The physical and chemical nature of nickel compounds is one of the key determinations of its toxicity. Soluble nickel freely enter cells, but is just as readily excreted reducing the opportunity for production of lipid damage. Nickel from NiCl2 strongly activated SOD activity. In vitro addition of nickel chloride to a crude lung preparation altered the KM for SOD without changing the Vmax. Nickel chloride produced increased enzyme affinity to the substrate, because decreased (O2-) concentration that yields half-maximal velocity. The combination of nickel and SOD may contribute to stabilization of the particular conformation of SOD responsible for maximal catalytically activity.
Resumo:
These data suggest that an improved understanding of the relationship between high dietary carbohydrate and the rate of lipid peroxidation may give some insight into possible treatment modalities for pancreatic damages and may shed light on molecular mechanisms underlying certain pathological processes. High dietary carbohydrate lesions are age related and induced alterations on ceruloplasmin, phospholipids, total proteins, copper and zinc serum levels. Significantly increased serum and pancreatic amylase, and lipoperoxide determinations were observed in 20 month old rats. Cu-Zn superoxide dismutase was decreased in these animals. Daily injection of Cu-Zn superoxide dismutase conjugated with polyethylene glycol (SOD-PEG) prevented the serum and pancreatic changes, indicating that superoxide radical is an important intermediate to high dietary carbohydrate lesion.
Resumo:
Trifluoperazine (TFP) (35 μM) prevents mitochondrial transmembrane potential (ΔΨ) collapse and swelling induced by 10 μM Ca2+ plus oxyradicals generated from δ-aminolevulinic acid autoxidation. In contrast with EGTA, TFP cannot restore the totally collapsed ΔΨ. So, TFP might not remove Ca2+ from its 'harmful site', but could impair the ROS-driven cross-linking between membrane -SH proteins. Our data are correlated with the protective uses of TFP against oxidative processes promoted by oxyradicals plus Ca2+.
Resumo:
Interleukin-1 (IL-1) may be a mediator of β-cell damage in insulin-dependent diabetes mellitus (IDDM). The IL-1 mechanism of action on insulin-producing cells probably includes activation of the transcription nuclear factor κB (NF-κB), increased transcription of the inducible form of nitric oxide synthase (iNOS) and the subsequent production of nitric oxide (NO). Reactive oxygen intermediates, particularly H2O2, have been proposed as second messengers for NF-κB activation. In the present study, we tested whether ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), a glutathione peroxidase mimicking compound, could counteract the effects of IL-1β, H2O2 and alloxan in rat pancreatic islets and in the rat insulinoma cell line RINm5F (RIN cells). Some of these experiments were also reproduced in human pancreatic islets. Ebselen (20 μM) prevented the increase in nitrite production by rat islets exposed to IL-1β for 6 hr and induced significant protection against the acute inhibitory effects of alloxan or H2O2 exposure, as judged by the preserved glucose oxidation rates. However, ebselen failed to prevent the increase in nitrite production and the decrease in glucose oxidation and insulin release by rat islets exposed to IL-1β for 24 hr. Ebselen prevented the increase in nitrite production by human islets exposed for 14 hr to a combination of cytokines (IL-1β, tumor necrosis factor-α and interferon-γ). In RIN cells, ebselen counteracted both the expression of iNOS mRNA and the increase in nitrite production induced by 6 hr exposure to IL-β but failed to block IL-1β-induced iNOS expression following 24 hr exposure to the cytokine. Moreover, ebselen did not prevent IL-1β-induced NF-κB activation. As a whole, these data indicate that ebselen partially counteracts cytokine-induced NOS activation in pancreatic β-cells, an effect not associated with inhibition of NF-κB activation.
Resumo:
The fate of folpet from the treatment on vine to the production of wine was studied. Sunlight degraded folpet to unknown products. Phthalimide was a minor metabolite formed on grapes from folpet. Folpet degraded in must, giving 80% phthalimide; the results obtained with model solutions showed that in must folpet can also give small amounts of phthalic acid. During wine-making folpet degraded completely, and at the end of fermentation phthalimide was only present in wine. This compound was stable in wine after several months. The presence of folpet in grapes inhibited the alcoholic fermentation of Saccharomyces cerevisiae and Kloeckera apiculata completely. Phthalimide, on the contrary, had no negative effect on the fermentative action of the two yeasts. GC and HPLC methods were developed to determine folpet and its metabolites.
Resumo:
The antimalarial properties of azomethine H represent the basis for its use as a chemotherapeutic agent. This work was carried out in order to verify the biological side effects of azomethine H and to clarify the contribution of reactive oxygen species (ROS) in this process. It was shown that azomethine H increased serum activities of amylase, alanine transaminase (ALT) and the TEARS concentrations, in rats. No changes were observed in glutathione peroxidase and catalase activities. The drug-induced tissue damage might be due to superoxide radicals (O-2(.-)), since Cu-Zn superoxide dismutase activities were increased by azomethine I-I treatment. This study allows tentative conclusions to be drawn regarding which reactive oxygen metabolites play a role in azomethine H activity. We concluded that (O-2(.-)) maybe produced as a mediator of azomethine H action.
Resumo:
The persistence of three pesticides (fenitrothion, dimethoate, and ziram) in apricots in field conditions and their fate during the drying process were studied. After the treatments, the pesticides showed fast decay rates with pseudo-first-order kinetics and half-lives ranging from 6.9 to 9.9 days. The drying process showed a different effect on residue concentrations in dried apricots: omethoate (metabolite of dimethoate) and ziram residues had almost doubled, while fenitrothion disappeared and dimethoate remained constant.
Resumo:
In the yeast Saccharomyces cerevisiae a novel control exerted by TPS1 (=GGS1=FDP1=BYP1=CIF1=GLC6=TSS1)-encoded trehalose-6-phosphate synthase, is essential for restriction of glucose influx into glycolysis apparently by inhibiting hexokinase activity in vivo. We show that up to 50-fold overexpression of hexokinase does not noticeably affect growth on glucose or fructose in wild-type cells. However, it causes higher levels of glucose-6-phosphate, fructose-6-phosphate and also faster accumulation of fructose-1,6-bisphosphate during the initiation of fermentation. The levels of ATP and Pi correlated inversely with the higher sugar phosphate levels. In the first minutes after glucose addition, the metabolite pattern observed was intermediate between those of the tps1Δ mutant and tile wild-type strain. Apparently, during the start-up of fermentation hexokinase is more rate-limiting in the first section of glycolysis than phosphofructokinase. We have developed a method to measure the free intracellular glucose level which is based on the simultaneous addition of D-glucose and an equal concentration of radiolabelled L-glucose. Since the latter is not transported, the free intracellular glucose level can be calculated as the difference between the total B-glucose measured (intracellular + periplasmic/extracellular) and the total L-glucose measured (periplasmic/extracellular). The intracellular glucose level rose in 5 min after addition of 100 mM-glucose to 0.5-2 mM in the wild-type strain, ± 10 mm in a hxk1Δ hxk2Δ glk1Δ and 2-3 mM in a tps1Δ strain. In the strains overexpressing hexokinase PII the level of free intracellular glucose was not reduced. Overexpression of hexokinase PII never produced a strong effect on the rate of ethanol production and glucose consumption. Our results show that overexpression of hexokinase does not cause the same phenotype as deletion of Tps1. However, it mimics it transiently during the initiation of fermentation. Afterwards, the Tps1-dependent control system is apparently able to restrict Properly up to 50-fold higher hexokinase activity.
Resumo:
Magnesium chloride (MgCl2) has been proposed for the treatment of seizures of different etiologies. The present study investigated the effect of MgCl2 on aldrin-induced seizures. Initially, 50 male rats received 60 mg aldrin/kg po and the effects were classified as muscular twitches, clonic convulsions or tonic-clonic convulsions. Another group of 40 rats dosed with 60 mg aldrin/kg po received 0, 4, 8, or 12 mg MgCl2/kg im. The percentage of tonic-clonic convulsant rats that resulted from MgCl2 treatment were 90% at 0 mg/kg; 50% at 4 mg/kg, 40% at 8 mg/kg and 20% at 12 mg MgCl2/kg. The percentage of survivors in the group receiving 12 mg MgCl2/kg was 80% while the control group had 20% survival. The clonic convulsions were not modified by MgCl2 treatment. Blood and brain concentrations of aldrin and dieldrin (metabolite of aldrin) did not differ among groups. The MgCl2 administration decreased the neuroexcitability induced by aldrin and increased survivability.