193 resultados para Ketac Endo
Resumo:
Introduction: Endodontic chelators may extrude to apical tissues during instrumentation activating cellular events on periapical tissues. This study assessed in vitro the expression of nitric oxide (NO) concentrations by murine peritoneal macrophages after contact with MTAD (Dentsply/Tulsa, Tulsa, OK), Tetraclean (Ogna Laboratori Farmaceutici, Muggio, Italy), Smear Clear (Sybron Endo, Orange, CA), and EDTA (Biodinamica, Ibipora, PR, Brazil). Methods: Macrophage cells were obtained from Swiss mice after peritoneal lavage. Chelators were diluted in distilled water obtaining 12 concentrations, and MTT assay identified the concentrations, per group, displaying the highest cell viability (analysis of variance, p < 0.01). Selected concentrations were tested for NO expression using Griess reaction. Culture medium and lipopolysaccharide (LPS) were used as controls. Results: Analysis of variance and Tukey tests showed that all chelators displayed elevated NO concentrations compared with the negative control (p < 0.01). MTAD induced the lowest NO expression, followed by Tetraclean, EDTA, and Smear Clear. No difference was observed between MTAD and Tetraclean (p > 0.01), Tetraclean and EDTA (p > 0.01), and EDTA and Smear Clear (p > 0.01). LPS ranked similar to both EDTA and Smear Clear (p > 0.01). Conclusion: The tested endodontic chelators displayed severe proinflammatory effects on murine-cultured macrophages. Citric acid-based solutions induce lower No release than EDTA-based irrigants. (J Endod 2009;35:824-828)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: The aim of this study was to evaluate the ability of Resilon (Resilon Research, LLC, North Branford, CT) and 2 types of gutta-percha to fill simulated lateral canals when using the Obtura II system (Model 823-700; Obtura Spartan, Fenton, MO). Methods: Forty-five human single-rooted teeth were selected and subjected to root canal preparation. After that, simulated lateral canals were made at 2, 5, and 8 mm from the working length (WL). The specimens were divided into 3 groups (n = 15) according to the filling material used: Obtura Flow 150 gutta-percha (Obtura flow), Odous Endo Flow gutta-percha (Odous; Odous de Deus Ind e Corn. Ltda Belo Horizonte, MG, Brazil), and Resilon pellets (Resilon). Root canals were filled using the Obtura II system with the tip inserted to 3 mm from the WL. No sealer was used for root canal obturation. Specimens were subjected to a tooth decalcification and clearing method, and filling of the lateral canals was analyzed by digital radiography and photographs. The measurement of lateral canal filling was done using Image Tool software (UTHSCSA Image Tool for Windows version 3.0, San Antonio, TX). Data were statistically analyzed with the Kruskal-Wallis test at 5% significance. Results: All materials showed an ability to penetrate into the simulated lateral canals, with a minimum percentage of 73% in all thirds of the root canal. Conclusions: It was concluded that gutta-percha and Resilon are solid core materials with a lateral canal filling ability when used with the Obtura II system. (J Endod 2012;38:676-679)
Resumo:
Introduction: To evaluate calcium ion release and pH of Sealer 26 (S26) (Dentsply, Rio de Janeiro, RJ, Brazil), white mineral trioxide aggregate (MTA), Endo CPM Sealer (CPM1) (EGEO SRL Bajo licencia MTM Argentina SA, Buenos Aires, Argentina), Endo CPM Sealer in a thicker consistency (CPM 2), and zinc oxide and eugenol cement (ZOE). Methods: Material samples (n = 10) were placed in polyethylene tubes and immersed in 10 mL of distilled water. After 3, 6,12,24, and 48 hours and 7,14, and 28 days, the water pH was determined with a pH meter, and calcium release was assessed by atomic absorption spectrophotometry. An empty tube was used as the control group. Results: The control group presented a pH value of 6.9 at all studied periods and did not show the presence of calcium ion. S26 presented greater hydroxyl ion release up to 12 hours (p < 0.05). From 24 hours until 28 days, S26, MTA, CPM1, and CPM2 had similar results. in ail periods, ZOE presented the lowest hydroxyl ion release. CPM1, followed by CPM2, released the most calcium ions until 24 hours (p < 0.05). Between 48 hours and 7 days, CPM1 and CPM2 had the highest release. A greater calcium ion release was observed for CPM2, followed by CPM1 at 14 days and for S26, CPM1, and CPM2 at 28 days. ZOE released the least calcium ions in all periods. Conclusion: Sealer 26, MTA, and Endo CPM sealer at normal or thicker consistency release hydroxyl and calcium ions. Endo CPM sealer may be an alternative as root-end filling material. (J Endod 2009;35:1418-1421)
Resumo:
Aim To analyse the thermoplasticity of several endodontic filling materials using the Obtura II System at different temperature settings.Methodology The following materials based on gutta-percha: Regular Obtura (OBT), Obtura Flow 150 (OBT F), Endo Flow (EDF), Odous (ODO) and the synthetic thermoplastic polymer material Resilon (RE) were heated using the Obtura II System at three temperature settings (140, 170 and 200 degrees C). Samples of the heated materials were placed on the sensor of a digital thermometer (THR-140; Instrutherm, São Paulo, Brazil) to determine their real temperature (RT) when the system was set at 140 degrees C (from 64.5 to 69 degrees C), 170 degrees C (from 73.8 to 77.5 degrees C) and 200 degrees C (from 83.6 degrees C for EDF and 100 degrees C for RE). Specimens (n = 30) were made by placing samples of each material in metallic ring moulds and compressing them between two glass slabs. After 24 h, specimens (n = 10) were heated at the different settings (RT) and submitted to compression under a 5-kg load. Plasticization was assessed by calculating the differences between the post-compression and initial diameters of each specimen. Data were submitted to ANOVA and Tukey's test at 5% significance.Results At 140 degrees C, Obtura Flow presented the highest thermoplasticity values and Regular Obtura, the lowest. At 170 degrees C, Obtura Flow and Resilon demonstrated greater plasticization. Resilon had the highest mean thermoplasticity values at 200 degrees C.Conclusions Thermoplasticity values were influenced both by the temperature settings on the Obtura II System and by the type of material analysed. Obtura Flow and Resilon had the highest mean thermoplasticity values.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mixtures of dioctadecyldimethylammonium chloride (DODAC) cationic vesicle dispersions with aqueous micelle solutions of the anionic sodium cholate (NaC) were investigated by differential scanning calorimetry, DSC, turbidity and light scattering. Within the concentration range investigated (constant 1.0 mM DODAC and varying NaC concentration up to 4 mM), vesicle -> micelle -> aggregate transitions were observed. The turbidity of DODAC/NaC/water depends on time and NaC/DODAB molar concentration ratio R. At equilibrium, turbidity initially decreases smoothly with R to a low value (owing to the vesicle-micelle transition) when R = 0.5-0.8 and then increases steeply to a high value (owing to the micelle-aggregate transition) when R = 0.9-1.0. DSC thermograms exhibit a single and sharp endothermic peak at T-m approximate to 49 degrees C, characteristic of the melting temperature of neat DODAC vesicles in water. Upon addition of NaC, T-m initially decreases to vanish around R = 0.5, and the main transition peak broadens as R increases. For R > 1.0 two new (endo- and exothermic) peaks appear at lower temperatures indicating the formation of large aggregates since the dispersion is turbid. All samples are non-birefringent. Dynamic light scattering (DLS) data indicate that both DODAC and DODAC/NaC dispersions are highly polydisperse, and that the mean size of the aggregates tends to decrease as R increases. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Endo-polygalacturonase (endo-PG), exo-polygalacturonase (exo-PG) and pectin liase (PL) were produced by solid-state fermentation of a mixture of orange bagasse and wheat bran (1:1) with the filamentous fungus Penicillium viridicatum RFC3. This substrate was prepared with two moisture contents, 70% and 80%, and each was fermented in two types of container, Erlenmeyer flask and polypropylene pack. When Erlenmeyer flasks were used, the medium containing 80% of initial moisture afforded higher PL production while neither exo- nor endo-PG production was influenced by substrate moisture. The highest enzyme activities obtained were 0.70 U mL(-1) for endo-PG, 8.90 U mL(-1) for exo-PG, and 41.30 U mL(-1) for PL. However, when the fermentation was done in polypropylene packs, higher production of all three enzymes was obtained at 70% moisture (0.7 and 8.33 U mL(-1) for endo- and exo-PG and 100 U mL(-1) for PL). An increase in the pH and decrease in the reducing sugar content of the medium was observed. The fungus was able to produce pectin esterase and other depolymerizing enzymes such as xylanase, CMCase, protease and amylase. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Avaliou-se o efeito de diferentes níveis do composto enzimático Natugrain Blend L®, que contém endo-xilanase e endo-beta-glucanase, sobre a digestibilidade dos nutrientes e a energia do triticale pela tilápia-do-nilo. O método para a determinação da digestibilidade foi o indireto, utilizando-se o óxido de crômio III (0,10%). O delineamento experimental foi inteiramente ao acaso, com cinco tratamentos e três repetições. O nível de substituição da dieta-referência foi 50,0% pelo triticale. Os tratamentos foram 0,0; 150,0; 300,0; 450,0 e 600,0mg kg-1 de Natugrain Blend L, que contém 800 unidades g-1 de endo-1,3(4)-β-glucanase (BGU) e 36.600 unidades g-1 de endo-1,4-β-xylanase (EXU). Os coeficientes de digestibilidade aparente foram: da matéria seca, 76,42; 74,01; 83,39; 82,97 e 78,34%; da proteína bruta 88,19; 88,39; 90,52; 92,05 e 88,34%, da energia bruta 75,93; 71,31; 81,78; 80,27 e 78,62%, respectivamente, para os níveis de inclusão na dieta 0,0; 150,0; 300,0; 450,0 e 600,0mg kg-1 de Natugrain Blend L.Os resultados demonstram que 300mg kg-1 do complexo de enzimas foi suficiente para aumentar o coeficiente de digestibilidade aparente da matéria seca. O composto de enzimas pode ser utilizado para aumentar a eficiência de aproveitamento dos nutrientes do triticale.
Resumo:
O objetivo do presente trabalho foi avaliar as características de qualidade: pH, cor, valor R, perda por exsudação, capacidade de retenção e absorção de água, capacidade de emulsificação, perdas por cocção, força de cisalhamento e análise sensorial da carne de matrizes pesadas de descarte de frangos de corte. A carne de peito de matrizes apresentou valores médios do parâmetro pH, valor R, perda por exsudação e valor de L* de 5,70, 1,43, 2,00 e 50,11, respectivamente. Para a capacidade de retenção e absorção de água, perda de peso por cozimento e força de cisalhamento, os valores médios foram de 77, 58, 18% e 4,94kgf cm-2, respectivamente. Na análise sensorial, a carne de matriz apresentou baixa intensidade de maciez (6,9) e menor suculência (3,4) e foi a mais elástica, borrachenta e difícil de deglutir. A carne de matrizes pesadas de descarte apresenta boas características de qualidade tecnológicas que possibilitam sua utilização como matéria-prima para a elaboração de industrializados.
Resumo:
Xylan is the principal type of hemicellulose. It is a linear polymer of beta-D-xylopyranosyl units linked by (1-4) glycosidic bonds. In nature, the polysaccharide backbone may be added to 4-O-methyl-alpha-D-glucuronopyranosyl units, acetyl groups, alpha-L-arabinofuranosyl, etc., in variable proportions. An enzymatic complex is responsible for the hydrolysis of xylan, but the main enzymes involved are endo-1,4-beta-xylanase and beta-xylosidase. These enzymes are produced by fungi, bacteria, yeast, marine algae, protozoans, snails, crustaceans, insect, seeds, etc., but the principal commercial source is filamentous fungi. Recently, there has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. This review describes some properties of xylan and its metabolism, as well as the biochemical properties of xylanases and their commercial applications.