202 resultados para Inhibitory effect


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective:This study evaluated the in vitro adherence of pathogenic micro-organisms, Candida albicans, Staphylococcus aureus and Pseudomonas aeruginosa, to soft lining materials and their inhibitory effect on these micro-organisms.Materials and Methods:To measure adherence, specimens of Molloplast B and Ufi Gel P were inoculated [107 colony-forming units per millimetre (cfu/ml)] with TSB media containing the micro-organisms. To determine the number of micro-organisms in the 10-2-10-5 dilutions, 25 mu l of the suspension were transferred to plates of selective media. Colony counts of each specimen were quantified (cfu/ml). The surface roughness was measured with a perfilometer to assess the relationship between the adherence of micro-organisms and surface roughness of each material. For the inhibition test, specimens of materials were placed in agar plates inoculated individually with the micro-organisms. After 48 h, the inhibition zones around the specimens were measured.Results:None of the materials exhibited inhibition zones. The number of cfu/ml of S. aureus and P. aeruginosa were significantly greater than C. albicans for both materials. The Ufi Gel P exhibited greater adherence of C. albicans than Molloplast B. No correlation was observed between the adherence of micro-organisms and surface roughness.Conclusion:The surface roughness of the materials is not the only factor governing micro-organism adherence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: The incorporation of antibacterial agents into adhesive systems has been proposed to eliminate residual bacteria from dentine. This study used the agar diffusion method to evaluate the antibacterial activity of Clearfil Protect Bond (CPB), Clearfil SE Bond (CSEB), Clearfil Tri-S Bond (C3SB) and Xeno-III (XIII) self-etching adhesive systems, with or without light-activation, against cariogenic bacteria, and to assess the influence of human dentine on the antibacterial activity of these materials.Methods: An aliquot of 10 mu l per material (and individual components) were pipetted onto paper and dentine discs distributed in Petri dishes containing bacterial culture in BHI agar. Positive control was 0.2% chlorhexidine digluconate (CHX).Results: After incubation, the adhesive components of CPB and CSEB, liquid A of XIII and C3SB did not present antibacterial activity when applied to paper discs. The non-light-activated CPB primer + adhesive promoted the greatest inhibition of Streptococcus mutans (p < 0.05), whereas with light-activation, there was no significant difference between primer + adhesive and primer alone. For Lactobacillus acidophilus, CPB primer presented the greatest antibacterial activity in both light-activation conditions (p < 0.05). Regarding the dentine discs, only CHX promoted an inhibitory effect, though less intense than on paper discs (p < 0.05). CHX presented greater antibacterial activity against S. mutans than against L. acidophilus (p < 0.05).Conclusions: Light-activation significantly reduced the antibacterial activity of the self-etching adhesive systems; MDPB incorporation contributed to the effect of adhesive systems against cariogenic bacteria; the components eluted from the adhesive systems were not capable to diffuse through 400 mu m-thick dentine disc to exert their antibacterial activity against cariogenic bacteria. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peripheral treatment with cholinergic or adrenergic agonists results in salivation and the possibility of synergy between cholinergic and adrenergic efferent mechanisms in the control of salivation has been proposed. Central injections of the cholinergic agonist pilocarpine also induce salivation, while the effects of central injections of noradrenaline (norepinephrine) are not known. Here (a) the effects of intracerebroventricular (icv) injection of noradrenaline on the salivation induced by icv or intraperitoneal (i.p.) injection of pilocarpine and (b) the receptors involved in the effects of central noradrenaline on pilocarpine-induced salivation were investigated. Male Holtzman rats with a stainless-steel guide cannula implanted into the lateral ventricle were used. Rats were anaesthetized with tribromoethanol (200 mg/kg body weight) and saliva was collected on small, preweighed cotton balls inserted into the animal's mouth. Noradrenaline (40, 80 and 160 nmol/l mul) injected icv reduced the salivary secretion induced by pilocarpine (0.5 mumol/l mul) injected icv. Noradrenaline (80 and 160 nmol/l mul) injected icv also reduced the salivation induced by pilocarpine (4 mumol/kg) injected i.p. Previous treatment with the alpha(2)-adrenergic receptor antagonists RX 821002 (40, 80 and 160 nmol/l mul) or yohimbine (160 and 320 nmol/l mul) abolished the inhibitory effect produced by icv injection of noradrenaline on pilocarpine-induced salivation in rats. Prazosin (alpha(1)-adrenergic receptor antagonist) injected icv did not change the effect of noradrenaline on pilocarpine-induced salivation. Prior icv injection of only RX 821002 (80 or 160 nmol/l mul) or yohimbine (320 nmol/l mul) increased pilocarpine-induced salivation. The results show that (1) contrary to its peripheral effects, noradrenaline acting centrally inhibits cholinergic-induced salivation in rats; (2) central mechanisms involving alpha(2)-adrenergic receptors inhibit pilocarpine-induced salivation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present experiments we investigated a possible involvement of imidazoline receptors of the paraventricular nucleus (PVN) of the hypothalamus on the presser effects of the angiotensin LI (ANG II) injected into the subfornical organ (SFO), in male Holtzman rats (250-300 g) with a cannula implanted into the third ventricle (3rdV), PVN and SFO. At first we tested the participation of alpha(2) and imidazoline agonist and antagonist compounds on the presser effect of ANG II injected into the 3rdV. Based on the results we may conclude that clonidine associated with rilmenidine was able to block the hypertensive response to ANG IT. The ANG II (20 pmol) injected into SFO induced a robust increase in blood pressure (37 +/- 2 mmHg). Isotonic saline (0.15 M) NaCl did not produce any change in blood pressure (5 +/- 2 mmHg). The injection of rilmenidine (30 mu g/kg/l mu L), an imidazoline agonist agent injected into PVN before ANG II injection into SFO, blocked the presser effect of ANG II (5 +/- 2 mmHg). Also, the injection of idazoxan (60 mu g/kg/mu L) before rilmenidine blocked the inhibitory effect of rilmenidine on blood pressure (39 +/- 4 mmHg). The injection of clonidine (20 nmol/mu L) prior to ANG II into the 3rdV produced a decreased in arterial blood pressure (37 +/- 2 mmHg) to (15 +/- 4 mmHg). The injection of yohimbine (80 nmol/mu L) prior to clonidine blocked the effect of clonidine on the effect of ANG II (27 +/- 2 mmHg). The injection of rilmenidine prior to ANG TI also induced a decrease in arterial blood pressure (10 +/- 3 mmHg). The injection of idazoxan prior to rilmenidine also blocked the inhibitory effect of rilmenidine (24 +/- 3 mmHg). In summary, the present study demonstrated that rilmenidine decreases the hypertensive effect of ANG II, with more potency than clonidine, even when injected into 3rdV or PVN. This study established that the PVN interacts with SFO by imidazoline receptors in order to control the arterial blood pressure. (C) Elsevier, Paris.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salivation induced by intraperitoneal (i.p.) injections of pilocarpine (cholinergic agonist) is reduced by intracerebroventricular (i.c.v.) injections of moxonidine (alpha(2) adrenergic and imidazoline receptor agonist). In the present study, we investigated the involvement of central alpha(2) adrenergic receptors in the inhibitory effect of i.c.v. moxonidine on i.p. pilocarpine-induced salivation. Male Holtzman rats with stainless steel cannula implanted into the lateral ventricle (LV) were used. Saliva was collected using pre-weighted small cotton balls inserted into the animal's mouth under ketamine (100 mg kg(-1)) anesthesia. Salivation was induced by i.p. injection of pilocarpine (4 mu mol kg(-1)). Pilocarpine-induced salivation was reduced by i.c.v. injection of moxonidine (10 nmol) and enhanced by i.c.v. injections of either RX 821002 (160 nmol) or yohimbine (320 nmol). The inhibitory effect of i.c.v. moxonidine on pilocarpine-induced salivation was abolished by prior i.c.v. injections of the alpha(2) adrenergic receptor antagonists, RX 821002 (160 nmol) or yohimbine (160 and 320 nmol). The alpha(1) adrenergic receptor antagonist prazosin (320 nmol) injected i.c.v. did not change the effect of moxonidine on pilocarpine-induced salivation. The results suggest that moxonidine acts on central alpha(2) adrenergic receptors to inhibit pilocarpine-induced salivation, and that this salivation is tonically inhibited by central alpha(2) adrenergic receptors. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypothalamic paraventricular nucleus (PVN) has an important role in the regulation of water and sodium intake. Several researches described the presence of 5-HT1 receptors in the central nervous system. 5-HTIA was one of the prime receptors identified and it is found in the somatodendritic and post-synaptic forms. Therefore, the aim of this study was to investigate the participation of serotonergic 5-HT1A receptors in the PVN on the sodium intake induced by sodium depletion followed by 24 h of deprivation (injection of the diuretic furosemide plus 24 h of sodium-deficient diet). Rats (280-320 g) were submitted to the implant of cannulas bilaterally in the PVN. 5-HT injections (10 and 20 mu g/0.2 mu l) in the PVN reduced NaCl 1.8% intake. 8-OH-DPAT injections (2.5 and 5.0 fig/0.2 mu l) in the PVN also reduced NaCl 1.8% intake. pMPPF bilateral injections (5-HT1A antagonist) previously to 8-OH-DPAT injections have completely blocked the inhibitory effect over NaCl 1.8% intake. 5-HT1A antagonists partially reduced the inhibitory effect of 5-HT on NaCl 1.8% intake induced by sodium depletion. In contrast, the intake of palatable solution (2% sucrose) under body fluid-replete conditions was not changed after bilateral PVN 8-OH-DPTA injections. The results show that 5HT(1A) serotonergic mechanisms in the PVN modulate sodium intake induced by sodium loss. The finding that sucrose intake was not affected by PVN 5-HT1A activation suggests that the effects of the 5-HT1A treatments on the intake of NaCl are not due to mechanisms producing a nonspecific decrease of all ingestive behaviors. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Central injections of the alpha(2) adrenergic/imidazoline receptor agonist moxonidine inhibit water and NaCl intake in rats. In the present study, we investigated the possible involvement of central alpha(2) adrenergic receptors on the inhibitory effect of moxonidine in 0.3 M NaCl intake induced by 24 h sodium depletion. Male Holtzman rats with stainless-steel cannulas implanted into the lateral ventricle (LV) were used. Sodium depletion was produced by the treatment with the diuretic furosemide (20 mg/kg of body weight) injected subcutaneously + 24 h of sodium-deficient diet. Intracerebroventricular (icv) injections of moxonidine (20 nmol/l mul) reduced sodium depletion-induced 0.3 M NaCl intake (6.6 +/- 1.9 ml/120 min vs. vehicle: 12.7 +/- 1.7 ml/120 min). Pre-treatment with the alpha(2) adrenoreceptor antagonists RX 821002 (80 nmol/l mul), SK&F 86466 (640 nmol/l mul) and yohimbine (320 nmol/3 mul) injected icv abolished the inhibitory effect of icv moxonidine on sodium depletion-induced 0.3 M NaCl intake (13.3 +/- 1.4, 15.7 +/- 1.7 and 11.8 +/- 2.2 ml/120 min, respectively). The results show that the activation of alpha(2) adrenoreceptors is essential for the inhibitory effect of central moxonidine on sodium depletion-induced NaCl intake. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we investigated the influence of d(CH2)(5)-Tyr (Me)-AVP (AAVP) an antagonist of V-1 receptors of arginine(8)-vasopressin (AVP) and the effects of losartan and CGP42112A (selective ligands of the AT, and AT, angiotensin receptors, respectively) injections into the paraventricular nucleus (PVN) on the thirst effects of AVP stimulation of the lateral septal area (LSA). AVP injection into the LSA increased the water intake in a dose-dependent manner. AAVP injected into the PVN produced a dose-dependent reduction of the drinking responses elicited by LSA administration of AVP. Both the AT(1) and AT(2) ligands administered into the PVN elicited a concentration-dependent inhibition in the water intake induced by AVP injected into the LSA, but losartan was more effective than CGP42112A the increase in the AVP response. These results indicate that LSA dipsogenic effects induced by AVP are mediated primarily by PVN AT(1) receptors. However, doses of losartan were more effective when combined with CGP42112A than when given alone, suggesting that the thirst induced by AVP injections into LSA may involve activation of multiple angiotensin II (ANG II) receptor subtypes. These results also suggests that facilitatory effects of AVP on water intake into the LSA are mediated through the activation of V-receptors and that the inhibitory effect requires V-receptors. Based on the present findings, we suggest that the administration of AVP into the LSA may play a role in the PVN control of water control. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present experiments were conducted to investigate die role of the alpha(1A)-, alpha(1B)-, beta(1)-, beta(2)-adrenoceptors, and the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) on the water and sodium intake elicited by paraventricular nucleus (PVN) injection of adrenaline. Male Holtzman rats with a stainless steel cannula implanted into the PVN were used. The ingestion of water and sodium was determined in separate groups submitted to water deprivation or sodium depletion with the diuretic furosemide (20 mg/rat). 5-Methylurapidil (an alpha(1A)-adrenergic antagonist) and ICI-118,551 (a beta(2)-adrenergic antagonist) injected into the PVN produced a dose-dependent increase, whereas cyclazosin (an alpha(1B)-adrenergic antagonist) and atenolol (a beta(1)-adrenergic antagonist) do not affect the inhibitory effect of water intake induced by adrenaline. on the other hand, the PVN administration of adrenaline increased the sodium intake in a dose-dependent manner. Previous injection of the alpha(1A) and beta(1) antagonists decreased, whereas injection of the alpha(1B) and beta(2) antagonists increased the salt intake induced by adrenaline. In rats with several doses of adrenaline into PVN, the previous administration of losartan increased in a dose-dependent manner the inhibitory effect of adrenaline and decreased the salt intake induced by adrenaline, while PVN CGP42112A was without effect. These results indicate that both appetites are mediated primarily by brain AT(1) receptors. However, the doses of losartan were more effective when combined with the doses of CGP42112A than given alone p < 0.05, suggesting that the water and salt intake effects of PVN adrenaline may involve activation of multiple angiotensin II (ANG II) receptors subtypes. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 5-hydroxytryptamine (5-HT)(1A) receptor system plays a prominent role in a variety of physiological functions and behavior and regulation of this responsiveness of the receptor system has been implicated in the central regulation of water intake and urinary excretion. The lateral septal area (LSA) exhibits a high density of 5-HT1A receptors, as well as a subpopulation of oxytocin (OT) receptors. Here we report the effects of pMPPF (a selective 5-HT1A antagonist), d(CH2)(5)[Tyr(Me)(2)Thr(4), Orn(5), Tyr(NH2)(9)]-vasotocin (an OT antagonist), and that 5-HT1A receptor system is regulated as a consequence of activation of the Na+ channel by veratridine. Cannulae were implanted into the LSA of rats to enable the introduction of the drugs. Injections of 8-OH-DPAT (a 5-HT1A agonist) blocked water intake and increased urinary excretion, while pMPPF or the OT antagonist injected bilaterally before 8-OH-DPAT blocked its inhibitory effect on water intake and its diuretic effect. In contrast, increases in extracellular sodium levels induced by the sodium channel modulator, veratridine, enhanced 5-HT1A responsiveness for water intake and reduced the diuretic effects induced by 8-OH-DPAT. These trials demonstrated that the responsiveness of the 5-HT1A receptor system in the LSA can be enhanced or depressed as a consequence of an induced rise in extracellular sodium. (C) 2010 Elsevier B.V. All rights reserved.