119 resultados para Hellinger-Reissner generalized variational principle in complementary energy form
Resumo:
By incorporating the holographic principle in a time-depending Lambda-term cosmology, new physical bounds on the arbitrary parameters of the model can be obtained. Considering then the dark energy as a purely geometric entity, for which no equation of state has to be introduced, it is shown that the resulting range of allowed values for the parameters may explain both the coincidence problem and the universe accelerated expansion, without resorting to any kind of additional structures. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Dirac field is studied in a Lyra space-time background by means of the classical Schwinger Variational Principle. We obtain the equations of motion, establish the conservation laws, and get a scale relation relating the energy-momentum and spin tensors. Such scale relation is an intrinsic property for matter fields in Lyra background.
Resumo:
A quaternionic version of Quantum Mechanics is constructed using the Schwinger's formulation based on measurements and a Variational Principle. Commutation relations and evolution equations are provided, and the results are compared with other formulations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It is argued, contrary to various claims and expectations, that the phase shifts calculated via variational principles for the t matrix involving complex algebra may exhibit anomalous behavior. These anomalies are numerically demonstrated in the case of the complex Kohn and the Newton variational principles for the t matrix and are expected to appear for other similar variational principles for the t matrix, such as the Takatsuka-McKoy variational principle.
Resumo:
In this paper we investigate the energy transfer processes in TM3+/Er3+ doped telluride glass pumped at the commercial diode laser pump wavelength similar to 800 nm. Tailoring the rare-earths content in the glass matrix, seven main energy transfer channels within the doping range considered were identified, A 6-fold enhancement of the Er3+ visible frequency upconversion fluorescence at similar to 660 nm is observed due to the inclusion of Tm3+ ions. This is evidence of the relevant contribution of the route Er-1(I-4(11/2)) + Er-2(I-4(13/2)) -> Er-1(I-4(15/2)) + Er-2(F-4(9/2)) to the process. Energy migration among pumped I-4(9/2) level reducing the efficiency of the upconversion emission rate (H-3(11/2), S-4(3/2), and F-4(9/2)) is observed for Er3+ above 1.5 wt%. The rate equations regarding the observed energy transfer routes are determined and a qualitative analysis of the observed processes is reported. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
It is demonstrated, contrary to various claims, that the phase shifts calculated via variational principles involving the Green function may exhibit anomalous behavior. These anomalies may appear in variational principles for the K matrix (Schwinger variational principle) of potential V, for (K-V) (Kohn-type and Newton variational principles), and other variational principles of higher order (Takatsuka-McKoy variational principle).
Resumo:
The δ-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. Different ways of implementing the principle of minimal sensitivity to the δ-expansion produce in general different results for observables. For illustration we use the Nambu-Jona-Lasinio model for chiral symmetry restoration at finite density and compare results with those obtained with the Hartree-Fock approximation.
Resumo:
In this study, a given quasilinear problem is solved using variational methods. In particular, the existence of nontrivial solutions for GP is examined using minimax methods. The main theorem on the existence of a nontrivial solution for GP is detailed.
Resumo:
In Colombeau's theory, given an open subset Ω of ℝn, there is a differential algebra G(Ω) of generalized functions which contains in a natural way the space D′(Ω) of distributions as a vector subspace. There is also a simpler version of the algebra G,(Ω). Although this subalgebra does not contain, in canonical way, the space D′(Ω) is enough for most applications. This work is developed in the simplified generalized functions framework. In several applications it is necessary to compute higher intrinsic derivatives of generalized functions, and since these derivatives are multilinear maps, it is necessary to define the space of generalized functions in Banach spaces. In this article we introduce the composite function for a special class of generalized mappings (defined in open subsets of Banach spaces with values in Banach spaces) and we compute the higher intrinsic derivative of this composite function.
Resumo:
Experimental results are reported which show a strong evidence of energy transfer between Ho 3+ ions in a fluoroindate glass excited by a pulsed laser operating at 640 nm. We identified the origin of the blue and green upconverted fluorescence observed as being due to a Ho 3+-Ho 3+ pair interaction process. The dynamics of the fluorescence revealed the pathways involved in the energy transfer assisted upconversion process. © 2002 American Institute of Physics.
Resumo:
We present the first search for pair production of isolated jets of charged leptons in association with a large imbalance in transverse energy in pp̄ collisions using 5.8fb⊃-1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron Collider. No excess is observed above the standard model background, and the result is used to set upper limits on the production cross section of pairs of supersymmetric chargino and neutralino particles as a function of dark-photon mass, where the dark photon is produced in the decay of the lightest supersymmetric particle. © 2010 The American Physical Society.
Resumo:
In the Nilo Coelho irrigation scheme, Brazil, the natural vegetation has been replaced by irrigated agriculture, bringing importance for the quantification of the effects on the energy exchanges between the mixed vegetated surfaces and the lower atmosphere. Landsat satellite images and agro-meteorological stations from 1992 to 2011 were used together, for modelling these exchanges. Surface albedo (α0), NDVI and surface temperature (T0) were the basic remote sensing retrieving parameters necessary to calculate the latent heat flux (λE) and the surface resistance to evapotranspiration (rs) on a large scale. The daily net radiation (Rn) was obtained from α0, air temperature (Ta) and short-wave transmissivity (τsw) throughout the slob equation, allowing the quantification of the daily sensible heat flux (H) by residual in the energy balance equation. With a threshold value for rs, it was possible to separate the energy fluxes from crops and natural vegetation. The averaged fractions of Rn partitioned as H and λE, were in average 39 and 67%, respectively. It was observed an increase of the energy used for the evapotranspiration process inside irrigated areas from 51% in 1992 to 80% in 2011, with the ratio λE/Rn presenting an increase of 3 % per year. The tools and models applied in the current research, can subsidize the monitoring of the coupled climate and land use changes effects in irrigation perimeters, being valuable when aiming the sustainability of the irrigated agriculture in the future, avoiding conflicts among different water users. © 2012 SPIE.
Resumo:
This Letter describes the search for an enhanced production rate of events with a charged lepton and a neutrino in high-energy pp collisions at the LHC. The analysis uses data collected with the CMS detector, with an integrated luminosity of 5.0 fb-1 at √s=7 TeV, and a further 3.7 fb -1 at √s=8 TeV. No evidence is found for an excess. The results are interpreted in terms of limits on a heavy charged gauge boson (W ′) in the sequential standard model, a split universal extra dimension model, and contact interactions in the helicity-nonconserving model. For the last, values of the binding energy below 10.5 (8.8) TeV in the electron (muon) channel are excluded at a 95% confidence level. Interpreting the ℓν final state in terms of a heavy W′ with standard model couplings, masses below 2.90 TeV are excluded. © 2013 CERN.