62 resultados para Elastic Properties.
Resumo:
Descriptors and quantitative structure property relationships (QSPR) were investigated for mechanical property prediction of carbon nanotubes (CNTs). 78 molecular dynamics (MD) simulations were carried out, and 20 descriptors were calculated to build quantitative structure property relationships (QSPRs) for Young's modulus and Poisson's ratio in two separate analyses: vacancy only and vacancy plus methyl functionalization. In the first analysis, C N2/CT (number of non-sp2 hybridized carbons per the total carbons) and chiral angle were identified as critical descriptors for both Young's modulus and Poisson's ratio. Further analysis and literature findings indicate the effect of chiral angle is negligible at larger CNT radii for both properties. Raman spectroscopy can be used to measure CN2/C T, providing a direct link between experimental and computational results. Poisson's ratio approaches two different limiting values as CNT radii increases: 0.23-0.25 for chiral and armchair CNTs and 0.10 for zigzag CNTs (surface defects <3%). In the second analysis, the critical descriptors were CN2/CT, chiral angle, and MN/CT (number of methyl groups per total carbons). These results imply new types of defects can be represented as a new descriptor in QSPR models. Finally, results are qualified and quantified against experimental data. © 2013 American Chemical Society.
Resumo:
In order to investigate how environmental degradation affects the mechanical and thermal performance of polyetherimide/carbon fiber laminates, in this work different weathering were conducted. Additionally, dynamic mechanical analysis, interlaminar shear strength tests and non-destructive inspections were performed on this composite before and after being submitted to hygrothermal, UV radiation and thermal shock weathering. According to our results, hygrothermally aged samples had their glass transition temperature and elastic and storage moduli reduced by plasticization effect. Photooxidation, due to UV radiation exposure, occurred only on the surface of the laminates. Thermal shock induced a reversible stress on the composite's interface region. The results revealed that the mechanical behavior can vary during weather exposure but since this variation is only subtle, this thermoplastic laminate can be considered for high-performance applications, such as aerospace. © The Author(s) 2013.
Resumo:
Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD. ©2013 Elsevier B.V. All rights reserved.
Resumo:
We study consistently the pion's static observables and the elastic and γ* γ → π0 transition form factors within a light-front model. Consistency requires that all calculations are performed within a given model with the same and single adjusted length or mass-scale parameter of the associated pion bound-state wave function. Our results agree well with all extent data including recent Belle data on the γ* γ → π0 form factor at large q2, yet the BaBar data on this transition form factor resists a sensible comparison. We relax the initial constraint on the bound-state wave function and show the BaBar data can partially be accommodated. This, however, comes at the cost of a hard elastic form factor not in agreement with experiment. Moreover, the pion charge radius is about 40 % smaller than its experimentally determined value. It is argued that a decreasing charge radius produces an ever harder form factor with a bound-state amplitude difficultly reconcilable with soft QCD. We also discuss why vector dominance type models for the photon-quark vertex, based on analyticity and crossing symmetry, are unlikely to reproduce the litigious transition form factor data. © 2013 Springer-Verlag Wien.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A number of studies have demonstrated that simple elastic network models can reproduce experimental B-factors, providing insights into the structure-function properties of proteins. Here, we report a study on how to improve an elastic network model and explore its performance by predicting the experimental B-factors. Elastic network models are built on the experimental C coordinates, and they only take the pairs of C atoms within a given cutoff distance r(c) into account. These models describe the interactions by elastic springs with the same force constant. We have developed a method based on numerical simulations with a simple coarse-grained force field, to attribute weights to these spring constants. This method considers the time that two C atoms remain connected in the network during partial unfolding, establishing a means of measuring the strength of each link. We examined two different coarse-grained force fields and explored the computation of these weights by unfolding the native structures. Proteins 2014; 82:119-129. (c) 2013 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement.Materials and Methods: Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05).Results: The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade.Conclusions: The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used.Clinical Significance: Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND: Previous studies have evaluated the effectiveness of postural drainage (PD), percussion (PERC), the coughing technique (CT), and other types of coughing in subjects with bronchiectasis. However, the application times of these techniques and the quality of the expectorated mucus require further study. The aim of our study was to evaluate the effectiveness of PD, percussion, CT, and huffing in subjects with bronchiectasis and assess the quantity and quality of bronchial mucus produced (measurement of wet and dry weight and determination of viscoelastic properties). METHODS: Twenty-two subjects with stable bronchiectasis (6 men; mean age: 51.5 y) underwent 4 d of experimental study (CT, PD+CT, PD+PERC+CT, and PD+huffing). The techniques were performed in 3 20-min periods separated by 10 min of rest. Before performing any technique (baseline) and after each period (30, 60, and 90 min), expectorated mucus was collected for analysis of viscoelasticity. RESULTS: A significant increase in the dry weight/wet weight ratio was found after 60 min of PD+PERC+CT (P = .01) and 90 min of PD+huffing (P = .03) and PD+PERC+CT (P = .007) in comparison with CT. PD+PERC+CT and PD+huffing led to the greatest removal of viscoelastic mucus at 60 min (P = .02 and P = .002, respectively) and continued to do so at 90 min (P = .02 and P = .01, respectively) in comparison with CT. An interaction effect was found, as all techniques led to a greater removal of elastic mucus in comparison with CT at 60 min (PD+CT, P = .001; PD+PERC+CT, P < .001; PD+huffing, P < .001), but only PD+PERC+CT and PD+huffing led to a greater removal of elastic mucus than CT at 90 min (P < .001 and P = .005, respectively). CONCLUSIONS: PD+PERC+CT and PD+huffing performed similarly regarding the removal of viscoelastic mucus in 2 and 3 20-min periods separated by 10 min of rest. PD+PERC+CT led to the greatest removal of mucus in the shortest period (2 20-min periods separated by 10 min of rest). (C) 2015 Daedalus Enterprises
Resumo:
Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.
Resumo:
Objective. To evaluate bacterial growth inhibition, mechanical properties, and compound release rate and stability of copolymers incorporated with anthocyanin (ACY; Vaccinium macrocarpon). Methods. Resin samples were prepared (Bis-GMA/TEGDMA at 70/30 mol%) and incorporated with 2 w/w% of either ACY or chlorhexidine (CHX), except for the control group. Samples were individually immersed in a bacterial culture (Streptococcus mutans) for 24 h. Cell viability (n = 3) was assessed by counting the number of colony forming units on replica agar plates. Flexural strength (FS) and elastic modulus (E) were tested on a universal testing machine (n = 8). Compound release and chemical stability were evaluated by UV spectrophotometry and (1)H NMR (n = 3). Data were analyzed by one-way ANOVA and Tukey's test ( α = 0.05). Results. Both compounds inhibited S. mutans growth, with CHX being most effective (P < 0.05). Control resin had the lowest FS and E values, followed by ACY and CHX, with statistical difference between control and CHX groups for both mechanical properties (P < 0.05). The 24 h compound release rates were ACY: 1.33 μg/mL and CHX: 1.92 μg/mL. (1)H NMR spectra suggests that both compounds remained stable after being released in water. Conclusion. The present findings indicate that anthocyanins might be used as a natural antibacterial agent in resin based materials.