58 resultados para DIPOLAR DENDRONS
Resumo:
The structure of tick anticoagulant peptide (TAP) has been determined by X-ray crystallography at t.6 Å resolution complexed with bovine pancreatic trypsin inhibitor (BPTI). The TAP-BPTI crystals are tetragonal, a = b = 46.87, c = 50.35 Å, space group P41, four complexes per unit cell. The TAP molecules are highly dipolar and form an intermolecular helical array along the c-axis with a diameter of about 45 Å. Individual TAP units interact in a head-to-tail fashion, the positive end of one molecule associating with the distal negative end of another, and vice versa. The BPTI molecules have a uniformly distributed positively charged surface that interacts extensively through 14 hydrogen bonds and two hydrogen bonded salt bridges with the helical groove around the helical TAP chains. Comparing the structure of TAP in TAP-BPTI with TAP bound to factor Xa(Xa) suggests a massive reorganization in the N-terminal tetrapeptide and the first disulfide loop of TAP (CyS5(T)- Cys 15(T)) upon binding to Xa. The Tyr1(T)OH atom of TAP moves 14.2 Å to interact with Asp189 of the S1 specificity site, Arg3(T)CZ moves 5.0 Å with the guanidinium group forming a cation-π-electron complex in the S4 subsite of Xa, while Lys7(T)NZ differs in position by 10.6 Å in TAP-BPTI and TAP-Xa, all of which indicates a different pre-Xa-bound conformation for the N- terminal of TAP in its native state. In contrast to TAP, the BPTI structure of TAP-BPTI is practically the same as all those of previously determined structures of BPTI, only arginine and lysine side-chain conformations showing significant differences.
Resumo:
Monte Carlo simulations have been performed to investigate the structure and hydrogen bonds formation in liquid acetaldehyde. An all atom model for the acetaldehyde have been optimized in the present work. Theoretical values obtained for heat of vaporisation and density of the liquid are in good agreement with experimental data. Graphics of radial distribution function indicate a well structured liquid compared to other similar dipolar organic liquids. Molecular mechanics minimization in gas phase leads to a trimer of very stable structure. The geometry of this complex is in very good agreement with the rdf. The shortest site-site correlation is between oxygen and the carbonyl hydrogen, suggesting that this correlation play a important role in the liquid structure and properties. The O⋯H average distance and the C-H⋯O angle obtained are characteristic of weak hydrogen bonds.
Resumo:
In the present communication, by using dielectric spectroscopy measurement, the correlations between Nanosized Barrier Layer Capacitance (NBLC) (Bueno et al. (2009) [7]) and the high frequency polaronic near-Debye dipolar relaxation found in CaCu3Ti4O12 compounds was discussed. The polaronic process was confirmed to be closely associated with the ultrahigh dielectric features of CaCu3Ti4O12 materials and its concomitant dielectric loss. Herein, the shift in relaxation frequency as a function of temperature was used for calculating the activation energy for hopping electronic conduction. The value obtained was 33 meV, an energy whose magnitude is compatible and confirmed the hypothesis of polaronic features for this high frequency dipolar relaxation process. Furthermore, it is shown that the nanosized barrier inferred from the NBLC model has a polaronic feature with dielectric permittivity exiting orthogonally to dielectric loss, a phenomenological pattern that contradicts the normally observed behavior for traditional dielectrics but explain the dielectric and conductivity feature of CaCu3Ti4O12 compounds. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
Electrochemical analyses on confined electroactive molecular layers, herein exemplified with electroactive self-assembled monolayers, sample current contributions that are significantly influenced by additional nonfaradaic and uncompensated resistance effects that, though unresolved, can strongly distort redox analysis. Prior work has shown that impedance-derived capacitance spectroscopy approaches can cleanly resolve all contributions generated at such films, including those which are related to the layer dipolar/electrostatic relaxation characteristics. We show herein that, in isolating the faradaic and nonfaradaic contributions present within an improved equivalent circuit description of such interfaces, it is possible to accurately simulate subsequently observed cyclic voltammograms (that is, generated current versus potential patterns map accurately onto frequency domain measurements). Not only does this enable a frequency-resolved quantification of all components present, and in so doing, a full validation of the equivalent circuit model utilized, but also facilitates the generation of background subtracted cyclic voltammograms remarkably free from all but faradaic contributions. © 2012 American Chemical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Lithium ion conducting polymer electrolytes based on polyvinyl Alcohol (PVA-OH) complexed with salt Li2SO4 and different weight percent ratios of PEG(400) plasticizer have been prepared by solution cast technique using deionized water as solvent. The thermogravimetric analysis (TGA) showed that the thermal stability of the materials depended on the plasticizer content. The FTIR study confirmed the polymer salt complex formation. The modulus spectra indicated the non-Debye nature of the material; a dominant relaxation process is visible being associated with the dynamic glass transition, relaxation-a. The maximum of each peak is shifted to higher frequencies as the plasticizer increases due to an enhancement of dipolar mobility in the origin of cooperative motions. A power law frequency dependence of the real part of the electrical conductivity is observed, which is characteristic of the effects of ion-ion and/or ion-chain correlations in ion motion. This variation is well fitted to a Jonscher's expression.
Resumo:
Taking into account the presence of long-range dipolar interactions, we propose a model hamiltonian to calculate the canted-paramagnetic phase boundary of EuTe at low temperatures. By using spin-wave techniques we show that the critical field depends on T2 asymptotically. Our calculations are in good agreement with the experimental data. © 1981.
Resumo:
Coordenação de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)