143 resultados para Cu-ZnO-ZrO2 : HZSM-5
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Synthesis, characterization, and investigation of the thermal behavior of Cu(II) pyrazolyl complexes
Resumo:
This work reports the synthesis, characterization, and thermal behavior of three complexes of copper (II): [CuCl(2)(HPz)(4)] (1), [CuCl(2)(HdmPz)(4)] (2), and [CuCl(2)(HIPz)(4)] (3) (HPz = pyrazole; HdmPz = 3,5-dimethylpyrazole; HIPz = 4-iodopyrazole). The compounds were characterized by elemental analysis, infrared spectroscopy, and UV-Vis measurements. The thermal study of the compounds showed that the ligands are eliminated in 2-4 stages, yielding CuO as final residue.
Resumo:
Highly crystalline ZnO and Ga-modified zinc oxide (ZnO:Ga) nanoparticles containing 1, 3 and 5 atom% of Ga3+ were prepared by precipitation method at low temperature. The films were characterized by XRD, BET, XPS and SEM. No evidence of zinc gallate formation (ZnGa2O4), even in the samples containing 5 atom% of gallium, was detected by XRD. XPS data revealed that Ga is present into the ZnO matrix as Ga3+, according to the characteristic binding energies. The particle size decreased as the gallium level was increased as observed by SEM, which might be related to a faster hydrolysis reaction rate. The smaller particle size provided films with higher porosity and surface area, enabling a higher dye loading. When these films were applied to dye-sensitized solar cells (DSSCs) as photoelectrodes, the device based on ZnO: Ga 5 atom% presented an overall conversion efficiency of 6% (at 10 mW cm(-2)), a three-fold increase compared to the ZnO-based DSSCs under the same conditions. To our knowledge, this is one of the highest efficiencies reported so far for ZnO-based DSSCs. Transient absorption (TAS) study of the photoinduced dynamics of dye-sensitized ZnO:Ga films showed that the higher the gallium content, the higher the amount of dye cation formed, while no significant change on the recombination dynamics was observed. The study indicates that Ga-modification of nanocrystalline ZnO leads to an improvement of photocurrent and overall efficiency in the corresponding device.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Doped zirconia has been used in electronic applications in the cubic crystalline phase. Ceria-stabilized tetragonal zirconia presents high toughness and can also be applied as solid electrolytes. The tetragonal phase of zirconia can be stabilized at room temperature with ceria in a broad range of composition. However, CeO2-ZrO2 has low sinterability. so it is important to investigate the effect of sintering dopants. In this study the effect of iron, copper. manganese and nickel was investigated. The dopants such as iron and copper lowered the sintering temperature from 1600 degreesC down to 1450 degreesC, with a percentage of tetragonal phase retained at room temperature higher than 98% and also with an increase of the electrical conductivity. The electrical conductivity was measured using impedance spectroscopy. The grain boundary contribution was determined and the activation energy associated with the ionic conduction was 1.04 eV. The dopants can also promote a grain boundary cleanliness verified by blocking effect measurement. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The effects of Cr2O3 on the properties of (Zn, Co, Ta)-doped SnO2 varistors were investigated in this study. The samples with different Cr2O3 concentrations were sintered at 1400 degrees C for 2 h. The properties of (Zn, Co, Ta, Cr)-doped SnO2 varistors were evaluated by XRD. dilatornetry, SEM, I-V and impedance spectroscopy. DC electrical characterization showed a dramatic increase ill the breakdown electrical field and in the nonlinear coefficient with the increase in Cr2O3 concentration. The grain size was found to decrease from 13 to 5 mu m with increasing the Cr2O3 content. The impedance data, represented by means of Nyquist diagrams, show two time constants, one at low frequencies and the other at high frequencies. (c) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Two ways of application of intensive milling in ZnO varistors processing were compared. First was intensive milling of mixture of previously prepared constituent phases. In this case, intensive milling was applied only to obtain highly activated nanocrystalline varistor powder mixtures. Second application is intensive milling of simple mixture of oxides that could result not only in activation and formation of nanocrystal line powders, but also in mechanochernical reaction and synthesis of constituent phases. Powders and ceramics samples were characterized by XRD and SEM analysis. as well as by de electrical measurements (nonlinearity coefficients, leakage current and breakdown field). Differences in microstructural and electrical properties of obtained varistors were discussed and optimal milling and processing conditions were recommended. The best electrical characteristics were found in sample ZI -DMCP-m, which exhibited leakage current of 2.5 mu A/cm(2), nonlinear coefficient reaching 58 and breakdown field of 8950 V/cm. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Undoped and indium-doped Zinc oxide (ZnO) solid films were deposited by the pyrosol process at 450 degrees C on glass substrates From solutions where In/Zn ratio was 2, 5, and 10 at.%. Electrical measurements performed at room temperature show that the addition of indium changes the resistance of the films. The resistivities of doped films are less than non-doped ZnO films by one to two orders of magnitude depending on the dopant concentration in the solution. Preferential orientation of the films with the c-axis perpendicular to the substrate was detected by X-ray diffraction and polarized extended X-ray absorption fine structures measurements at the Zn K edge. This orientation depends on the indium concentration in the starting solution. The most textured films were obtained for solutions where In/Zn ratio was 2 and 5 at.%. When In/Zn = 10 at.%, the films had a nearly random orientation of crystallites. Evidence of the incorporation of indium in the ZnO lattice was obtained from extended X-ray absorption fine structures at the In and Zn K edges. The structural analysis of the least resistive film (Zn/In = 5 at.%) shows that In substitutes Zn in the wurtzite structure. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A method has been developed for the direct and simultaneous determination of As, Cu, Mn, Sb, and Se in drinking water by electrothermal atomic absorption spectrometry (ETAAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect back- ground correction. The thermal behavior of analytes during the pyrolysis and atomization stages was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3 and 1 + 1 (v/v) diluted water using mixtures of Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier, With 5 mug Pd + 3 mug Mg as the modifier, the pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1400degreesC and 2100degreesC, respectively, and 20 muL of the water sample (sample + 0.28 mol L-1 HNO3, 1 + 1, v/v), dispensed into the graphite tube, analytical curves were established ranging from 5.00 - 50.0 mug L-1 for As, Sb, Se; 10.0 - 100 mug L-1 for Cu; and 20.0 - 200 mug L-1 for Mn. The characteristic masses were around 39 pg As, 17 pg Cu, 60 pg Mn, 43 pg Sb, and 45 pg Se, and the lifetime of the tube was around 500 firings. The limits of detection (LOD) based on integrated absorbance (0.7 mug L-1 As, 0.2 mug L-1 Cu, 0.6 mug L-1 Mn, 0.3 mug L-1 Sb, 0.9 mug L-1 Se) exceeded the requirements of the Brazilian Food Regulations (decree # 310-ANVS from the Health Department), which established the maximum permissible level for As, Cu, Mn, Sb, and Se at 50 mug L-1, 1000 mug L-1, 2000 mug L-1, 5 mug L-1, and 50 mug L-1, respectively. The relative standard deviations (n = 12) were typically < 5.3% for As, < 0.5% for Cu, < 2.1% for Mn, < 11.7% for Sb, and < 9.2% for Se. The recoveries of As, Cu, Mn, Sb, and Se added to the mineral water samples varied from 102-111%, 91-107%, 92-109%, 89-97%, and 101-109%, respectively. Accuracy for the determination of As, Cu, Mu Sb and Se was checked using standard reference materials NIST SRM 1640 - Trace Elements in Natural Water, NIST SRM 1643d - Trace Elements in Water, and 10 mineral water samples. A paired t-test showed that the results were in agreement with the certified values of the standard reference materials at the 95% confidence level.
Resumo:
A method has been developed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by graphite furnace atomic absorption spectrometry (GFAAS) using a transversely heated graphite atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages using the mixture Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3, and diluted ethanol (1 + 1, v/v) containing different nitric acid concentrations. With 5 rhog Pd + 3 mug Mg as the modifiers, pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1200 C and 2200degreesC respectively. For 20 muL of diluted sample (10 muL ethanol + 10 muL of 0.28 mol L-1 HNO3) dispensed into the graphite tube, analytical curves in the 2.0 - 50 mug L-1 Al, As, Cu, Fe, Mn, Ni ranges were established. The calculated characteristic masses were - 37 pg Al, 73 pg As, 31 pg Cu, 16 pg Fe, 9 pg Mn, and 44 pg Ni, and the lifetime of the tube was around 2 50 firings. The limits of detection (LOD) based on integrated absorbance were 1.2 mug L-1 Al, 2.5 mug L-1 As. 0.22 mug L-1 Cu, 1.6 L-1 Fe 0.20 mug L-1 Mn 1.1 mug L-1 Ni. The relatively standard deviations (n = 12) were less than or equal to 3%, less than or equal to 6%, less than or equal to 2%, less than or equal to 3.4%, less than or equal to 1.3%, and less than or equal to 2% for Al, As, Cu, Fe, Mn, and Ni, respectively, the recoveries of Al, As, Cu, Fe, Mn and Ni added to fuel ethanol samples varied from 77% to 112%, 92% to 114%, 104% to 113%, 73% to 116%, 91% to 122% and 93% to 116%, respectively. Accuracy was checked for Al, As, Cu, Fe, Mn, and Ni determination in 20 samples purchased at local gas stations in Araraquara city, Brazil. A paired t-test showed that the results were in agreement at the 95% confidence level with those obtained by single-element GFAAS.
Resumo:
The flat-panel-display's (FPD) market and demand for highly efficient and colored luminescent films have been growing quickly. In this work, thin films were obtained from Pechini's solution by dip-coating. The green films were thermally treated at 873 K in order to get ZnO:Eu 1 at% thin film. A Schott(R) glass plate hydrothermally treated was used as substrate. The films have a mosaic shaped feature that was observed by optical microscopy. That feature is a result of substrate thermal treatment. The film deposition decreases the substrate transmittance in the visible range. When the F-7(0) -->L-5(6) (392nm) Eu3+ transition is excited, it is possible to detect emission from D-5(0) --> F-7(J) (J = 1, 2, 3 and 4) transitions. The D-5(0) --> F-7(2) transition is also observed by using ZnO excitation wavelengths indicating energy transfer from ZnO to Eu3+ ion. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
In this work was studied the distribution of Cr, Ni, Cu, Cd and Pb in humic fractions with different molecular size. The HS were extracted from waters (AHS), surface sediments (HESS), interface water sediment (HSIS) and bottom sediment (HSBS) collected in the Anhumas surface water collection reservoir, located in the district of Araraquara - São Paulo State Brazil. The humic substances were extracted by procedures recommended by International Humic Substances Society (IHSS). After purification by dialysis, the humic substances were fractionated using a multistage tangential flow ultrafiltration system. The fractionation patterns of HS characterized a mass distribution relatively uniform among the fractions with different molecular sizes, with larger values in the fractions F-2 (20.8%) and F-4 (23.8%), Except for the ions Pb(II) and Cu(II), which presented relatively higher concentrations in the fractions F-2 and F-4, respectively. In general, chromium, nickel, cadmium and lead have similar distributions in the five fractions with larger and medium molecular sizes (F-1 to F-5). With relation to the mass distributions in the different humic substances fractions extracted from sediment samples collected at three depth, they presented 42-48% of HS in the fractions with larger molecular sizes (F-1 and F-2), 29-31% in the middle fractions (F-3 and F-4) and 13-20% in the fractions with smaller molecular sizes (F-5 and F-6). In general, the metallic ions presented distributions similar among the respective fractions F-1 to F-6, Exceptions for Pb(II) and M(II) in surface sediment with concentrations relatively smaller in the fractions F-2 and F-4, respectively,