109 resultados para Bound state


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we have calculated the masses of mesons containing t-quark and their spins' coupling coefficients. This was achieved by solving Lippmann-Schwinger equation for the quark-antiquark bound state of heavy mesons in configuration space. Heavy meson masses submitted criteria for the strong nuclear interactive potential between two quarks. We investigated the stability of a few suitable potentials and offered the best of these potentials for heavy mesons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the hyperspherical adiabatic approach in a coupled-channel calculation, we present precise binding energies of excitons trapped by impurity donors in semiconductors within the effective-mass approximation. Energies for such three-body systems are presented as a function of the relative electron-hole mass sigma in the range 1 less than or equal to1/sigma less than or equal to6, where the Born-Oppenheimer approach is not efficiently applicable. The hyperspherical approach leads to precise energies using the intuitive picture of potential curves and nonadiabatic couplings in an ab initio procedure. We also present an estimation for a critical value of sigma (sigma (crit)) for which no bound state can be found. Comparisons are given with results of prior work by other authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We develop a systematic scheme to treat binary collisions between ultracold atoms in the presence of a strong laser field, tuned to the red of the trapping transition. We assume that the Rabi frequency is much less than the spacing between adjacent bound-state resonances, In this approach we neglect fine and hyperfine structures, but consider fully the three-dimensional aspects of the scattering process, up to the partial d wave. We apply the scheme to calculate the S matrix elements up to the second order in the ratio between the Rabi frequency and the laser detuning, We also obtain, fur this simplified multichannel model, the asymmetric line shapes of photoassociation spectroscopy, and the modification of the scattering length due to the light field at low, but finite, entrance kinetic energy. We emphasize that the present calculations can be generalized to treat more realistic models, and suggest how to carry out a thorough numerical comparison to this semianalytic theory. [S1050-2947(98)04902-6].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A system constituted of three bosons interacting via two-body separable potentials with fixed two-boson binding is known to lead to bound-state collapse in the case where the potential parameters allow two-boson S-matrix poles close to (resonance) and on (continuum bound state) the real momentum axis. The collapse is shown to be accompanied by an increase in the average kinetic energy of the two-body bound state, which signals a decrease in the range of the two-body interaction for fixed two-body binding. The collapse is claimed to be a manifestation of the well-known Thomas effect which leads to a collapse of the three-body system when the range of the two-body interaction goes to zero for a fixed two-body binding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A quantum deformed theory applicable to all shape-invariant bound-state systems is introduced by defining q-deformed ladder operators. We show that these new ladder operators satisfy new q-deformed commutation relations. In this context we construct an alternative q-deformed model that preserves the shape-invariance property presented by the primary system. q-deformed generalizations of Morse, Scarf and Coulomb potentials are given as examples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance and usefulness of renormalization are emphasized in non-relativistic quantum mechanics. The momentum space treatment of both two-body bound state and scattering problems involving some potentials singular at the origin exhibits ultraviolet divergence. The use of renormalization techniques in these problems leads to finite converged results for both the exact and perturbative solutions. The renormalization procedure is carried out for the quantum two-body problem in different partial waves for a minimal potential possessing only the threshold behaviour and no form factors. The renormalized perturbative and exact solutions for this problem are found to be consistent with each other. The useful role of the renormalization group equations for this problem is also pointed out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within the framework of scattering integral equations in momentum space, we present numerical results of scattering of three identical bosons at low energies in two dimensions for short-range separable potentials. An analysis of the present numerical results reveals the three-particle scattering observables to be independent of potential shape provided the low-energy two-particle binding energy and scattering length are held fixed throughout the investigation. We think that the present conclusion of model independence will be valid for any potential, local or nonlocal, whose range is much smaller than the size of the two-particle bound state.