49 resultados para Algebra, Abstract.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We show that the partition function of the super eigenvalue model satisfies, for finite N (non-perturbatively), an infinite set of constraints with even spins s = 4, 6, . . . , ∞. These constraints are associated with half of the bosonic generators of the super (W∞/2 ⊕ W1+∞/2) algebra. The simplest constraint (s = 4) is shown to be reducible to the super Virasoro constraints, previously used to construct the model.
Resumo:
We show that by using second-order differential operators as a realization of the so(2,1) Lie algebra, we can extend the class of quasi-exactly-solvable potentials with dynamical symmetries. As an example, we dynamically generate a potential of tenth power, which has been treated in the literature using other approaches, and discuss its relation with other potentials of lowest orders. The question of solvability is also studied. © 1991 The American Physical Society.
Resumo:
Recently Lukierski et al. [1] defined a κ-deformed Poincaré algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn et al. [2] showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ∈ ≡ 1/κ < 1 fm. We show that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ∈ ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum.