72 resultados para 090402 Catalytic Process Engineering
Resumo:
The optimized conditions for the preparation of a new manganese porphyrinosilica-template material are reported. The manganese porphyrinosilica-template was prepared by the sol-gel process, by the reaction of -SO2Cl groups present in the phenyl rings of MnTDC(SO2Cl)PPCl with 3-aminopropyltriethoxysilane. The reaction produces a precursor porphyrinopropylsilyl species, which were then polymerized with tetraethoxysilane. The presence of manganese porphyrin on xerogel is confirmed by ultraviolet visible absorption spectroscopy and thermogravimetric analysis (TGA). The prepared materials have surface areas between 19 and 674 m2 g-1. Electron spectroscopy imaging of the materials show that manganese distribution in the xerogel is uniform. Both manganese(III) porphyrinosilica-template and a similar iron(III) porphyrinosilica-template can catalyze the epoxidation of cyclooctene using iodozylbenzene as oxygen donor. The metalloporphyrinosilica-template presents catalytic activity similar to that of metaloporphyrin in solution. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The intermittent milling and dynamic steeping (IMDS) process is an alternative method developed for wet milling of maize. In this process, the steeping stage can be reduced to 5 h by soaking maize in water at 60°C for 2 h and cracking the kernels to remove solution components diffusional barriers with minimum germ damage. Maize was dynamically steeped in solutions with 0.0, 0.1, and 0.2% sulphur dioxide (SO2) and 0.00, 0.55% lactic acid. Germ recovery, germ damage, fibre in germ, oil content and uncracked kernels were determined. A conventional steeping procedure was also performed. Germ recovery was higher for all tests using both SO2 and lactic acid than for the others with best germ yield for concentrations of 0.2% SO2 and 0.55% lactic acid. Germ damage ranged from 7.4 to 18.2% for all tests. The presence of lactic acid in the steeping solution decreased the amount of fibre in germ fraction. Germ oil content ranged from 39.3% (0-0% SO2, 0.55% lactic acid) to 44.0% (0.2% SO2, 0.55% lactic acid) for all treatments using IMDS. The smallest difference was 5.5% between IMDS (0.2% SO2, 0.55% lactic acid) and the conventional 36 h steeping process. An average of 1.3% of kernels remained uncracked after IMDS process. © 2002 Silsoe Research Institute. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
This work aims at finding out the threshold to burning in surface grinding process. Acoustic emission and electric power signals are acquired from an analog-digital converter and processed through algorithms in order to generate a control signal to inform the operator or interrupt the process in the case of burning occurrence. The thresholds that dictate the situation of burn and non-burn were studied as well as a comparison between the two parameters was carried out. In the experimental work one type of steel (ABNT-1045 annealed) and one type of grinding wheel referred to as TARGA model 3TG80.3-NV were employed. Copyright © 2005 by ABCM.
Resumo:
This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding processes. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 Steel as work material. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system working at 2.5 MHz was used to collect the raw acoustic emission instead of the root mean square value usually employed. Many statistical analyses have shown to be effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm rate (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS. Copyright © 2006 by ABCM.
Resumo:
The conventional, grinding methods in some cases are not very efficient because the arising of thermal damages in the pieces is very common. Optimization methods of cutting fluid application in the grinding zone are essential to prevent thermal problems from interaction of the wheel grains with the workpiece. surface. The optimization can happen through the correct selection of the cut parameters and development of devices that eliminate air layer effects generated around the grinding wheel. This article will collaborate with the development of an experimentation methodology which allows evaluating, comparatively, the performance of the deflectors in the cutting region to minimize the air layer effect of the high speed of the grinding wheel. The air layers make the cutting fluid jet to dissipate in the machine. An optimized nozzle was used in order to compare the results with the conventional method (without baffles or deflectors) of cutting fluid application. The results showed the high eficciency of the deflectors or baffles in the finish results. Copyright © 2006 by ABCM.
Resumo:
This work involved the development of a smart system dedicated to surface burning detection in the grinding process through constant monitoring of the process by acoustic emission and electrical power signals. A program in Visual Basic® for Windows® was developed, which collects the signals through an analog-digital converter and further processes them using burning detection algorithms already known. Three other parameters are proposed here and a comparative study carried out. When burning occurs, the newly developed software program sends a control signal warning the operator or interrupting the process, and delivers process information via the Internet. Parallel to this, the user can also interfere in the process via Internet, changing parameters and/or monitoring the grinding process. The findings of a comparative study of the various parameters are also discussed here. Copyright © 2006 by ABCM.
Resumo:
The aim of this study was to evaluate the effects of the autogenous demineralized dentin matrix (ADDM) on the third molar socket wound healing process in humans, using the guided bone regeneration technique and a polytetrafluoroethylene barrier (PTFE). Twenty-seven dental sockets were divided into three groups: dental socket (Control), dental socket with PTFE barrier (PTFE), and dental socket with ADDM slices associated to PTFE banier (ADDM + PTFE). The dental sockets were submitted to radiographic bone densitometry analysis and statistical analysis on the 15th, 30th, 60th and 90th days using analysis of variance (ANOVA) and Tukey's test (p ≤ 0.05). The radiographic analysis of the ADDM + PTFE group showed greater homogeneity of bone radiopacity than the Control group and the PTFE group, during all the observation times. The dentin matrix gradually disappeared from the dental socket during the course of the repair process, suggesting its resorption during the bone remodeling process. It was concluded that the radiographic bone density of the dental sockets treated with ADDM was similar to that of the surrounding normal bone on the 90th day. The ADDM was biocompatible with the bone tissue of the surgical wounds of human dental sockets. The radiographic analysis revealed that the repair process was discreetly faster in the ADDM + PTFE group than in the Control and PTFE groups, although the difference was not statistically significant. In addition, the radiographic image of the ADDM + PTFE group suggested that its bone architecture was better than that of the Control and PFTE groups.
Resumo:
Modeling ERP software means capturing the information necessary for supporting enterprise management. This modeling process goes down through different abstraction layers, from enterprise modeling to code generation. Thus ERP is the kind of system where enterprise engineering undoubtedly has, or should have, a strong influence. For the case of Free/Open Source ERP, the lack of proper modeling methods and tools can jeopardize the advantage brought by source code availability. Therefore, the aim of this paper is to present a development process proposal for the Open Source ERP5 system. The proposed development process aims to cover different abstraction levels, taking into account well established standards and common practices, as well as platform issues. Its main goal is to provide an adaptable meta-process to ERP5 adopters. © 2006 IEEE.
Resumo:
SiC fiber-reinforced SiC matrix composite (SiCf/SiC) is one of the leading candidates in ceramic materials for engineering applications due to its unique combination of properties such as high thermal conductivity, high resistance to corrosion and working conditions. Fiber-reinforced composites are materials which exhibit a significant improvement in properties like ductility in comparison to the monolithic SiC ceramic. The SiCf/SiC composite was obtained from a C/C composite precursor using convertion reaction under high temperature and controlled atmosphere. In this work, SiC phase presented the stacking faults in the structure, being not possible to calculate the unit cell size, symmetry and bond lengths but it seem equal card number 29-1129 of JCPDS.
Resumo:
This classical way to manage product development processes for massive production seems to be changing: high pressure for cost reduction, higher quality standards, markets reaching for innovation lead to the necessity of new tools for development control. Into this, and learning from the automotive and aerospace industries factories from other segments are starting to understand and apply manufacturing and assembly oriented projects to ease the task of generate goods and from this obtain at least a part of the expected results. This paper is intended to demonstrate the applicability of the concepts of Concurrent Engineering and DFM/DFA (Design for Manufacturing and Assembly) in the development of products and parts for the White Goods industry in Brazil (major appliances as refrigerators, cookers and washing machines), showing one case concerning the development and releasing of a component. Finally is demonstrated in a short term how was reached a solution that could provide cost savings and reduction on the time to delivery using those techniques.
Resumo:
In this paper we present a mixed integer model that integrates lot sizing and lot scheduling decisions for the production planning of a soft drink company. The main contribution of the paper is to present a model that differ from others in the literature for the constraints related to the scheduling decisions. The proposed strategy is compared to other strategies presented in the literature.
Resumo:
Tests on spatial aptitude, in particular Visualization, have been shown to be efficient predictors of the academic performance of Technical Drawing stu-dents. It has recently been found that Spatial Working Memory (a construct defined as the ability to perform tasks with a figurative content that require si-multaneous storage and transformation of information) is strongly associated with Visualization. In the present study we analyze the predictive efficiency of a bat-tery of tests that included tests on Visualization, SpatialWorking Memory, Spatial Short-term Memory and Executive Function on a sample of first year engineering students. The results show that Spatial Working Memory (SWM) is the most important predictor of academic success in Technical Drawing. In our view, SWM tests can be useful for detecting as early as possible those students who will require more attention and support in the teaching-learning process.
Resumo:
The software industry has become more and more concerned with the appropriate application of activities that composes requirement engineering as a way to improve the quality of its products. In order to support these activities, several computational tools have been available in the market, although it is still possible to find a lack of resources related to some activities. In this context, this paper proposes the inclusion of a module to aid in the requirements specification to a tool called Requirements Elicitation Support Tool. This module allows to specify requirements in accordance with IEEE 830 standard, thus contributing to the documentation of the requirements established for a software system, besides supporting the learning of concepts related to the requirements specification, which improves the skills of users of the tool. © 2012 IEEE.
Resumo:
Gesture-based applications have particularities, since users interact in a natural way, much as they interact in the non-digital world. Hence, new requirements are needed on the software design process. This paper shows a software development process model for these applications, including requirement specification, design, implementation, and testing procedures. The steps and activities of the proposed model were tested through a game case study, which is a puzzle game. The puzzle is completed when all pieces of a painting are correctly positioned by the drag and drop action of users hand gesture. It also shows the results obtained of applying a heuristic evaluation on this game. © 2012 IEEE.
Resumo:
In this study, the flocculation process in continuous systems with chambers in series was analyzed using the classical kinetic model of aggregation and break-up proposed by Argaman and Kaufman, which incorporates two main parameters: K (a) and K (b). Typical values for these parameters were used, i. e., K (a) = 3.68 x 10(-5)-1.83 x 10(-4) and K (b) = 1.83 x 10(-7)-2.30 x 10(-7) s(-1). The analysis consisted of performing simulations of system behavior under different operating conditions, including variations in the number of chambers used and the utilization of fixed or scaled velocity gradients in the units. The response variable analyzed in all simulations was the total retention time necessary to achieve a given flocculation efficiency, which was determined by means of conventional solution methods of nonlinear algebraic equations, corresponding to the material balances on the system. Values for the number of chambers ranging from 1 to 5, velocity gradients of 20-60 s(-1) and flocculation efficiencies of 50-90 % were adopted.