543 resultados para tensile bond strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Materials and Methods: Ten blocks (5 ×6 × 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-μm Al2O3 particles + silanization, (2) silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37°C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (≤ 0.05). Results: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-μm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). Conclusion: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-μm Al2O3 and silanization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study compared the microtensile bond strength of resin-based cement (Panavia F) to silica-coated, silanized, glass-infiltrated high-alumina zirconia (In-Ceram Zirconia) ceramic in dry conditions and after various aging regimens. Materials and Methods: The specimens were placed in 1 of 4 groups: group 1: dry conditions (immediate testing without aging); group 2: water storage at 37°C for 150 days; group 3: 150 days of water storage followed by thermocycling (× 12,000, 5°C to 55°C); group 4: water storage for 300 days; group 5: water storage for 300 days followed by thermocycling. Results: Group 1 showed a significantly higher microtensile bond strength value (26.2 ± 1 MPa) than the other aging regimens (6.5 ± 1, 6.2 ± 2, 4.5 ± 1, 4.3 ± 1 MPa for groups 2, 3, 4, and 5, respectively) (P < .01). Conclusion: Satisfactory results were seen in dry conditions, but water storage and thermocycling resulted in significantly weaker bonds between the resin cement and the zirconia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to evaluate the durability of adhesion between acrylic teeth and denture base acrylic resin. The base surfaces of 24 acrylic teeth were flatted and submitted to 4 surface treatment methods: SM1 (control): No SM; SM2: application of a methyl methacrylate-based bonding agent (Vitacol); SM3: air abrasion with 30-μm silicone oxide plus silane; SM4: SM3 plus SM2. A heat-polymerized acrylic resin was applied to the teeth. Thereafter, bar specimens were produced for the microtensile test at dry and thermocyled conditions (60 days water storage followed by 12,000 cycles). The results showed that bond strength was significantly affected by the SM (P < .0001) (SM4 = SM2 > SM3 > SM1) and storage regimens (P < .0001) (dry > thermocycled). The methyl methacrylate-based adhesive showed the highest bond strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to compare the microtensile bond strength of resin cement to alumina-reinforced feldspathic ceramic submitted to acid etching or chairside tribochemical silica coating. Ten blocks of Vitadur-α were randomly divided into 2 groups according to conditioning method: (1) etching with 9.6% hydrofluoric acid or (2) chairside tribochemical silica coating. Each ceramic block was luted to the corresponding resin composite block with the resin cement (Panavia F). Next, bar specimens were produced for microtensile testing. No significant difference was observed between the 2 experimental groups (Student t test, P> .05). Both surface treatments showed similar microtensile bond strength values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of different light-curing units on the tensile bond strength and microhardness of a composite resin (Filtek Z250 - 3M/ESPE). Conventional halogen (Curing Light 2500 - 3M/ESPE; CL) and two blue light emitting diode curing units (Ultraled - Dabi/Atlante; UL; Ultrablue IS - DMC; UB3 and UB6) were selected for this study. Different light intensities (670, 130, 300, and 600 mW/cm2, respectively) and different curing times (20s, 40s and 60s) were evaluated. Knoop microhardness test was performed in the area corresponding to the fractured region of the specimen. A total of 12 groups (n=10) were established and the specimens were prepared using a stainless steel mold composed by two similar parts that contained a cone-shaped hole with two diameters (8.0 mm and 5.0 mm) and thickness of 1.0 mm. Next, the specimens were loaded in tensile strength until fracture in a universal testing machine at a crosshead speed of 0.5 mm/min and a 50 kg load cell. For the microhardness test, the same matrix was used to fabricate the specimens (12 groups; n=5). Microhardness was determined on the surfaces that were not exposed to the light source, using a Shimadzu HMV-2 Microhardness Tester at a static load of 50 g for 30 seconds. Data were analyzed statistically by two-way ANOVA and Tukey's test (p<0.05). Regarding the individual performance of the light-curing units, there was similarity in tensile strength with 20-s and 40-s exposure times and higher tensile strength when a 60-s light-activation time was used. Regarding microhardness, the halogen lamp had higher results when compared to the LED units. For all light-curing units, the variation of light-exposure time did not affect composite microhardness. However, lower irradiances needed longer light-activation times to produce similar effect as that obtained with high-irradiance light-curing sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of surface conditioning methods and thermocycling on the bond strength between a resin composite and an indirect composite system in order to test the repair bond strength. Materials and Methods: Eighteen blocks (5 x 5 x 4 mm) of indirect resin composite (Sinfony) were fabricated according to the manufacturer's instructions. The specimens were randomly assigned to one of the following two treatment conditions (9 blocks per treatment): (1) 10% hydrofluoric acid (HF) for 90 s (Dentsply) + silanization, (2) silica coating with 30-Ìm SiOx particles (CoJet) + silanization. After surface conditioning, the bonding agent was applied (Adper Single Bond) and light polymerized. The composite resin (W3D Master) was condensed and polymerized incrementally to form a block. Following storage in distilled water at 37°C for 24 h, the indirect composite/resin blocks were sectioned in two axes (x and y) with a diamond disk under coolant irrigation to obtain nontrimmed specimens (sticks) with approximately 0.6 mm2 of bonding area. Twelve specimens were obtained per block (N = 216, n = 108 sticks). The specimens from each repaired block were again randomly divided into 2 groups and tested either after storage in water for 24 h or thermocycling (6000 cycles, 5°C to 55°C). The microtensile bond strength test was performed in a universal testing machine (crosshead speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using two-way ANOVA (α = 0.05). Results: Both surface conditioning (p = 0.0001) and storage conditions (p = 0.0001) had a significant effect on the results. After 24 h water storage, silica coating and silanization (method 2) showed significantly higher bond strength results (46.4 ± 13.8 MPa) than that of hydrofluoric acid etching and silanization (method 1) (35.8 ± 9.7 MPa) (p < 0.001). After thermocycling, no significant difference was found between the mean bond strengths obtained with method 1 (34.1 ± 8.9 MPa) and method 2 (31.9 ± 7.9 MPa) (p > 0.05). Conclusion: Although after 24 h of testing, silica coating and silanization performed significantly better in resin-resin repair bond strength, both HF acid gel and silica coating followed by silanization revealed comparable bond strength results after thermocycling for 6000 times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the microtensile bond strength of a repair composite resin to a leucite-reinforced feldspathic ceramic (Omega 900, VITA) submitted to two surface conditionings methods: 1) etching with hydrofluoric acid + silane application or 2) tribochemical silica coating. The null hypothesis is that both surface treatments can generate similar bond strengths. Ten ceramic blocks (6x6x6 mm) were fabricated and randomly assigned to 2 groups (n=5), according to the conditioning method: G1- 10% hydrofluoric acid application for 2 min plus rinsing and drying, followed by silane application for 30 s; G2- airborne particle abrasion with 30 μm silica oxide particles (CoJet-Sand) for 20 s using a chairside air-abrasion device (CoJet System), followed by silane application for 5 min. Single Bond adhesive system was applied to the surfaces and light cured (40 s). Z-250 composite resin was placed incrementally on the treated ceramic surface to build a 6x6x6 mm block. Bar specimens with an adhesive area of approximately 1 ± 0.1 mm2 were obtained from the composite-ceramic blocks (6 per block and 30 per group) for microtensile testing. No statistically significant difference was observed between G1 (10.19 ± 3.1 MPa) and G2 (10.17 ± 3.1 MPa) (p=0.982) (Student's t test; á = 0.05). The null hypothesis was, therefore, accepted. In conclusion, both surface conditioning methods provided similar microtensile bond strengths between the repair composite resin and the ceramic. Further studies using long-term aging procedures should be conducted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study subjected two self-adhesive resin cements and two conventional resin cements to dry and aging conditions, to compare their microtensile bond strengths (MTBS) to dentin. Using four different luting systems (n = 10), 40 composite resin blocks (each 5x5x4 mm) were cemented to flat human crown dentin surfaces. The specimens were stored in water for 24 hours (37°C), at which point each specimen was sectioned along two axes to obtain beams that were divided randomly into two groups: dry samples, which were tested immediately, and samples that were subjected to accelerated aging conditions (12, 000 thermocycles followed by storage for 150 days). The μTBS results were affected significantly by the luting system used (P < 40001). Only the μTBS of Rely-X Unicem was reduced significantly after aging; the μTBS remained stable or increased for the other self-adhesive resin cement and the two conventional cements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the use of a two-step total etch and rinse adhesive, the correlation between the hyybrid layer thickness (HL) and bond strength (BS), and between resin tag length (RT) and bond strength in the same teeth, and also to evaluate the fracture patterns of the tested specimens. Ten human molars were used for the restorative procedure and then sectioned in two halves (mesio-distally). The materials used were Adper Single Bond 2, 3M ESPE, Ultra etch gel, Ultradent and Filtek Z250, 3M ESPE. One half were utilized to measure the HL thickness and RT length through light microscopy analysis (400x), and the other half was subject to a microtensile test to measure the BS. The fractured surfaces were analyzed by scanning electron microscopy and fracture patterns classified. The Pearson correlation test was applied (p = 0.05). The results of the analyses of each specimen then were correlated: mean HL thickness = 4.39 (0.48) microm, mean length of RT = 9.94 (1.69) microm, mean BS = 23.98 (10.24) MPa. A statistically significant correlation between HL thickness and bond strength was found (r = 0.93). The two step etch and rinse adhesive system, showed a strong correlation between HL thickness and bond strength. The most common fractures were adhesive, followed by cohesive in resin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the correlation between the hybrid layer thickness/resin tag length and the microtensile bond strength of conventional two-step adhesive system, when applied to healthy dentinal tissue. After performing the restorative adhesive procedures and tooth extractions, ten specimens were sectioned in the mesiodistal direction. One section was used for microscopic analysis of the resin tag lengths and the hybrid layer thickness, while the other was used for the microtensile bond strength test (0.5 mm/min). The fractured surface was classified according to the fracture pattern, under a stereoscopic microscope at 40x magnification. Data obtained were submitted to analysis using one-way ANOVA and Pearson's Correlation test (alpha=0.05). The means corresponding to the hybrid layer thickness, resin tag lengths and the microtensile test were 2.68 microm, 6.43 microm and 16.23 MPa, respectively. There was no correlation between the means of the values obtained for the microtensile test, and those presented by the hybrid layer (r2=0.40, p>0.05) and resin tags (r2=0.21, p>0.05). The microtensile bond strength of the conventional two-step adhesive system Adper Single Bond 2 did not depend on the thickness of the hybrid layer and length of resin tags.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the correlation between the hybrid layer thickness, resin tag length and resin bond strength of a self-etching adhesive system to sound dentin tissue in vivo. After performing restorative procedures and tooth extractions, ten specimens were sectioned in a mesiodistal direction. One dental section was used for light microscope analysis, in which both the resin tag length and hybrid layer thickness were measured, while the other section was analyzed using a microtensile test (0.5 mm/min). The fractured surface of the latter section was characterized using a stereoscopic magnifying glass (40x magnifcation). The results were subject to statistical analysis using the Pearson Correlation Test (a = 0.05). The hybrid layer thickness, resin tag length and resin bond strength mean values were 2.19 microm (0.34), 4.34 microm (0.28) and 9.73 MPa (5,55), respectively. In addition, correlation tests between the resin tag length and the resin bond strength (r=0.014) and also between the hybrid layer thickness and bond strength (r=0.43), showed no statistically significant correlation. The microtensile bond strength of Adper Prompt L Pop self-etching adhesive system does not depend on hybrid layer thickness or resin tag length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. To compare three different designs for measuring the bond strength between Y-TZP ceramic and a composite material, before and after ceramic surface treatment, evaluating the influence of the size of the adhesive interface for each design.Methods. 'Macro'tensile, microtensile, 'macro'shear, microshear, 'macro'push-out, and micropush-out tests were carried out. Two Y-TZP surface treatments were evaluated: silanization (sil) and tribochemical silica coating (30 mu m silica-modified Al2O3 particles + silanization) (TBS). Failure mode analysis of tested samples was also performed. Results. Both the surface treatment and the size of the bonded interface significantly affected the results (p = 0.00). Regardless of the type of surface treatment, the microtensile and microshear tests had higher values than their equivalent "macro" tests. However, the push-out test showed the highest values for the "macro" test. The tensile tests showed the greatest variability in results. The tribochemical silica coating method significantly increased bond strength for all tests.Significance. Different test designs can change the outcome for Y-TZP/cement interfaces, in terms of mean values and reliability (variability). The 'micro'tests expressed higher bond strengths than their equivalent 'macro'tests, with the exception of the push-out test (macro > micro). (C) 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of thermocycling on the bond strength between Procera AllCeram (Nobel-Biocare) and a resin cement (Panavia F, Kuraray CO). Nine ceramic blocks with dimensions of 5x6x6mm were conditioned at one face with Rocatec System (Espe). After, they were luted with Panavia F to composite resin blocks (Clearfil AP-X, Kuraray CO). The nine groups formed by ceramic, cement and composite resin were split up obtaining 75 samples with dimensions of 12x1x1mm and adhesive surface presenting 1mm2±0.1mm2 of area. The samples were divided into 3 groups (n=25): G1 - 14 days in distilled water at 37ºC; G2 – 6,000 cycles in water (5ºC - 55ºC – 30s); G3 – 12,000 cycles in water (5ºC - 55ºC – 30s). The samples were tested in a universal testing machine (EMIC) at a crosshead speed of 1mm/min. Data were analyzed by ANOVA and Tukey tests. The results indicated that mean values of rupture tension (MPa) of G1 (10.71 ± 3.54) did not differ statistically (p <5%) from G2 (9.01 ± 3.90), however there was statistical difference between G1 and G3 (7.28 ± 3.00). It was concluded that thermocycling significantly reduced the bond strength values when samples were submitted to 12,000 cycles.